Direkt zum Inhalt

2 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Axiome, euklidische Geometrie

Im historischen Entstehungsprozess der Geometrie wurden relativ einfache, anschauliche Aussagen als Axiome gewählt, auf deren Grundlage sich die übrigen Sachverhalte beweisen ließen. Axiome sind also experimentellen Ursprungs, d. h. auch, dass sie gewisse einfache, anschauliche Eigenschaften des realen Raumes widerspiegeln. Die Axiome sind somit grundsätzliche Aussagen über die Grundbegriffe einer Geometrie, die dem betrachteten geometrischen System ohne Beweis hinzugefügt werden und auf deren Basis alle weiteren Aussagen des betrachteten Systems bewiesen werden.

Artikel lesen

Axiomensystem, euklidische Geometrie

Das Axiomensystem bei EUKLID (und HILBERT) ist nicht willkürlich gewählt worden, sondern eine Abstraktion aus der jahrtausendelangen Erfahrungswelt des Menschen. Die dazugehörige Geometrie ist daher die Geometrie unseres Anschauungsraumes.
Bis zum Ende des 19. Jh. lag der gesamten Naturwissenschaft und Technik diese euklidische Geometrie zugrunde.

2 Suchergebnisse

Fächer
  • Mathematik (2)
Klassen
  • 5. Klasse (2)
  • 6. Klasse (2)
  • 7. Klasse (2)
  • 8. Klasse (2)
  • 9. Klasse (2)
  • 10. Klasse (2)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025