Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Mathematik
  3. 7 Planimetrie
  4. 7.1 Grundbegriffe
  5. 7.1.1 Ebene, Linie, Punkt, Gerade, Strahl und Strecke
  6. Axiomensystem, euklidische Geometrie

Axiomensystem, euklidische Geometrie

Das Axiomensystem bei EUKLID (und HILBERT) ist nicht willkürlich gewählt worden, sondern eine Abstraktion aus der jahrtausendelangen Erfahrungswelt des Menschen. Die dazugehörige Geometrie ist daher die Geometrie unseres Anschauungsraumes.
Bis zum Ende des 19. Jh. lag der gesamten Naturwissenschaft und Technik diese euklidische Geometrie zugrunde.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Das Axiomensystem bei EUKLID und auch bei HILBERT ist nicht willkürlich gewählt worden, sondern eine Abstraktion aus der jahrtausendelangen Erfahrungswelt des Menschen. Die dazugehörige Geometrie ist daher die Geometrie unseres Anschauungsraumes. Bis zum Ende des 19. Jh. lag der gesamten Naturwissenschaft und Technik diese euklidische Geometrie zugrunde. Erst die moderne Naturwissenschaft hat gezeigt, dass man zu allgemeineren Geometrien übergehen muss, um die neuen Erkenntnisse richtig zu beschreiben.

Grundbegriffe für die Festlegung des euklidischen Raumes sind „Punkt“, „Gerade“ und „Ebene“ sowie der Begriff „Kongruenz“. Zum vollständigen und widerspruchsfreien Axiomsystem der euklid-hilbertschen Geometrie gehören folgende in Gruppen zusammengefasste Axiome der Inzidenz (Verknüpfung), Anordnung, Parallelität und Stetigkeit, deren Unabhängigkeit HILBERT nachweisen konnte:

  • Axiome der Inzidenz (Verknüpfung)
  • Axiome der Anordnung
  • Axiome der Kongruenz
  • Axiom der Parallelen – euklidisches Parallelenaxiom
  • Axiom der Stetigkeit – archimedisches Axiom
  • Axiome der Bewegung

Die Widerspruchsfreiheit sowie die Vollständigkeit und die Unabhängigkeit dieses Axiomensystems können bewiesen werden, was allerdings aufgrund der Vielzahl der Axioms kompliziert ist. So ist z. B. die Unabhängigkeit des Parallelenaxiom erst mit der Entwicklung der nichteuklidischen Geometrien gezeigt worden.

Lernhelfer (Duden Learnattack GmbH): "Axiomensystem, euklidische Geometrie." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/schuelerlexikon/mathematik/artikel/axiomensystem-euklidische-geometrie (Abgerufen: 09. June 2025, 19:47 UTC)

Suche nach passenden Schlagwörtern

  • widerspruchsfreies Axiomensystem
  • Unabhängigkeit
  • Euklid
  • euklidische Geometrie
  • Axiomensystem
  • archimedisches Axiom
  • Hilbert
  • euklid-hilbertsche Geometrie
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Nikolai Iwanowitsch Lobatschewski

* 20. November 1792 Nishni-Nowgorod
† 12. Februar 1856 Kasan

NIKOLAI IWANOWITSCH LOBATSCHEWSKI gilt neben dem Ungarn JANOS BOLYAI als Begründer der nichteuklidischen Geometrie.
Ausgehend von der Negation des euklidischen Parallelenaxioms gelangte er zur hyperbolischen Geometrie, die heute nach ihm auch lobatschewskische Geometrie genannt wird.

Zur Geschichte des euklidischen Parallelenaxioms

In seinem Hauptwerk „Die Elemente“ legt EUKLID VON ALEXANDRIA (etwa 365 bis etwa 300 v.Chr.) einen systematischen Aufbau der Geometrie vor. Dabei spielt das sogenannte Parallelenaxiom eine besondere Rolle.
Zum Ende des 18. Jahrhunderts setzte sich immer mehr die Erkenntnis durch, dass das Parallelenaxiom nicht aus den anderen Axiomen EUKLIDS ableitbar und damit für den Aufbau der euklidischen Geometrie unverzichtbar ist.
Ausgehend von der Negation des Parallelenaxioms gelang es, völlig neue und in sich widerspruchsfreie Geometrien aufzubauen. Der russische Mathematiker LOBATSCHEWSKI und der Ungar JANOS BOLAYI entdeckten unabhängig voneinander zunächst die hyperbolische Geometrie, BERNHARD RIEMANN entwickelte später die elliptische Geometrie.
Speziell gehört es heute zu den aktuellen Fragen der Physik, welche der Geometrien das Universum im Großen am besten beschreibt. Ist es also elliptisch (sphärisch), euklidisch (eben) oder hyperbolisch?

Diophantische Gleichungen

Eine Gleichung der Form a x + b y = c mit ganzzahligen Koeffizienten a, b und c, für die ganze Zahlen x und y als Lösungen gesucht sind, heißt eine (lineare) diophantische Gleichung in zwei Unbekannten.
Diophantische Gleichungen können gelöst werden durch systematisches Probieren, mit der Methode der korrespondieren Kongruenzen, mittels formaler Bruchschreibweise sowie mithilfe des euklidischen Algorithmus.

Heron von Alexandria

HERON VON ALEXANDRIA hat etwa in der zweiten Hälfte des 1.Jahrhunderts gelebt und stammt vermutlich aus Ägypten. Seine Lebensdaten werden in den einzelnen Quellen unterschiedlich angegeben.
HERON war ein äußerst vielseitiger Mathematiker und Naturforscher.
Von seinen Werken war besonders die „Geometrica“, eine Zusammenstellung von Formeln und Aufgaben, populär.
Intensiv beschäftigte er sich auch mit Problemen der Mechanik und Optik.

Zur Geschichte der Zahlen

Unser dekadisches Positionssystem geht auf den indischen Kulturkreis zurück. Der arabische Mathematiker AL-CHWARIZMI erklärte und verwendete im Jahre 820 in seinem Lehrbuch der Arithmetik neue indische Ziffern. Im 12. Jahrhundert wurde dieses Buch in Spanien durch ROBERT VON CHESTER übersetzt. Von da aus traten die sogenannten arabischen Ziffern ihren Siegeszug an.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025