Direkt zum Inhalt

1 Suchergebnis

Alle Filter zurücksetzen
Artikel lesen

Drei-Sigma-Regel

Wählt man in der tschebyschewschen Ungleichung P ( |   X − E X   | ≥ α ) ≤ 1 α 2 ⋅ D 2 X für den Parameter α Vielfache der Standardabweichung σ = D X = E ( X − E X ) 2 , setzt man also α = n ⋅ σ , so erhält man:
  P ( |   X − E X   | ≥ n ⋅ σ ) ≤ 1 ( n ⋅ σ ) 2 ⋅ σ 2 = 1 n 2

Die Wahrscheinlichkeit, dass X einen Wert annimmt, der von EX um mindestens das n-fache der Standardabweichung σ abweicht, ist folglich höchstens 1 n 2 .
Für die Spezialfälle n = 1 ;       2 ;       3 ergibt sich dann Folgendes:
  P ( |   X − E X   | ≥ σ ) ≤ 1   P ( |   X − E X   | ≥ 2 σ ) ≤ 0,25   P ( |   X − E X   | ≥ 3 σ ) ≤ 0, 1 ¯

Diese aus der tschebyschewschen Ungleichung gewonnenen Aussagen werden als σ - Re g e l oder 3 σ - Re g e l bezeichnet.

1 Suchergebnis

Fächer
  • Mathematik (1)
Klassen
  • Oberstufe/Abitur (1)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025