Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Mathematik Abitur
  3. 11 Analytische Geometrie der Ebene und des Raumes
  4. 11.6 Kegelschnitte
  5. 11.6.1 Schnittfiguren eines Kegels
  6. Definition der Kegelschnitte

Definition der Kegelschnitte

Als Kegelschnitte bezeichnet man Kurven, die beim Schnitt eines geraden Doppelkreiskegels (Rotationskegels) mit einer Ebene ε entstehen.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.
  • Schnitt eines Rotationskegels mit einer Ebene (Ellipse als Schnittfigur)

In Abhängigkeit vom Neigungswinkel α der Schnittebene in Bezug auf den halben Öffnungswinkel ϕ des Kegels ergeben sich die folgenden (regulären) Kegelschnitte:

  • Ellipse ( ϕ < α ≤ 90   ° )
    Spezialfall: Kreis ( α = 90   ° )
  • Parabel ( α = ϕ )
  • Hyperbel ( 0   ° ≤ α < ϕ )

Anmerkung: Verläuft die Schnittebene durch die Spitze S des Doppelkegels, entstehen entartete Kegelschnitte (Geradenpaar bzw. Punkt).

Bild

Die folgende Abbildung zeigt nochmals das Entstehen der Kegelschnitte Kreis, Ellipse, Parabel und Hyperbel (wobei hier nicht auf den halben Öffnungswinkel ϕ , sondern auf den Neigungswinkel der Mantellinie gegenüber der Grundfläche Bezug genommen wird).

Bild

Definition der Kegelschnitte als geometrischer Ort und ihre Fadenkonstruktionen

  • Der Kreis ist der geometrische Ort aller Punkte der Ebene, die von einem festen Punkt, dem Mittelpunkt M, den gleichen Abstand (Radius r) besitzen.

Fadenkonstruktion: Ein Faden der Länge r wird am Mittelpunkt M festgehalten. Ein Schreibstift am gespannten Faden beschreibt dann einen Kreisbogen.

Bild

  • Die Ellipse ist der geometrische Ort aller Punkte der Ebene, für die die Summe der Abstände von zwei festen Punkten, den Brennpunkten F 1       u n d       F 2 , konstant ist.

Fadenkonstruktion: Ein Faden der Länge 2 a > 2 e (2e Abstand der Brennpunkte) wird in F 1       u n d       F 2 befestigt. Ein Schreibstift am gespannten Faden beschreibt dann die Ellipse (Gärtnerkonstruktion).

Bild

  • Die Parabel ist der geometrische Ort aller Punkte der Ebene, deren Abstände von einem festen Punkt (dem Brennpunkt F) und einer Geraden (der Leitlinie l) konstant sind.

Fadenkonstruktion: Ein Faden wird im Brennpunkt F und am Ende eines Schenkels eines rechtwinkligen Dreiecks befestigt. Der andere Schenkel liegt auf der Leitlinie. Der Schreibstift wird mit gespannten Faden entlang des Schenkels geführt und beschreibt die Parabel.

Bild

  • Die Hyperbel ist der geometrische Ort aller Punkte der Ebene, für die die Differenz der Abstände von zwei festen Punkten, den Brennpunkten F 1       u n d       F 2 konstant ist.

Fadenkonstruktion: Ein Stab der Länge l wird am Brennpunkt F 1 drehbar befestigt. Ein Faden der Länge f = l − 2 a wird am anderen Ende des Stabes und in F 2 befestigt. Der Schreibstift wird mit dem gespannten Faden am Stab entlang geführt und beschreibt dabei einen Hyperbelast.

Bild

Lernhelfer (Duden Learnattack GmbH): "Definition der Kegelschnitte." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/index.php/schuelerlexikon/mathematik-abitur/artikel/definition-der-kegelschnitte (Abgerufen: 20. May 2025, 04:08 UTC)

Suche nach passenden Schlagwörtern

  • Fadenkonstruktion
  • Video
  • Kreis
  • Leitlinie
  • Ortsdefinition
  • Parabel
  • Ellipse
  • Brennpunkte
  • Gärtnerkonstruktion
  • Hyperbel
  • Doppelkegel
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Germinal Pierre Dandelin

* 12. April 1794 Le Bourget
† 15. Februar 1847 Brüssel

Der belgische Mathematiker französischer Herkunft ist vor allem dadurch bekannt, dass er zur Herleitung der Eigenschaften von Kegelschnitten als erster (später nach ihm benannte) Kugeln benutzte, die jeweils Kegel und Schnittebene berühren.

Asymptoten der Hyperbel

Als einziger Kegelschnitt besitzt die Hyperbel ein Paar Asymptoten. Deren Gleichungen lassen sich wie im Folgenden skizziert bestimmen.

Entartete Kegelschnitte

Die Definition der Kegelschnitte lässt neben den regulären Formen (Kreis, Ellipse, Parabel, Hyperbel) noch die sogenannten entarteten Kegelschnitte zu.

Kegelschnitte in Polarkoordinatendarstellung

Zur Darstellung von Kegelschnitten in Polarkoordinaten werden die folgenden Umrechnungsformeln (von kartesischen Koordinaten in Polarkoordinaten) benutzt:
  x = r ⋅ cos ϕ y = r ⋅ sin ϕ   ( ∗ )

Durch Einsetzen in die Mittelpunkts- oder Scheitelgleichungen des entsprechenden Kegelschnittes und anschließendes Umformen ergeben sich die gewünschten Darstellungen.

Gleichungen der Kegelschnitte

Im Allgemeinen werden (nur) Kegelschnitte in sogenannter achsenparalleler Lage betrachtet. Dann lassen sich relativ einfache Mittelpunktsgleichungen für Kreis, Ellipse und Hyperbel sowie eine allgemeine Scheitelgleichung für alle Kegelschnitte angegeben.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025