Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Mathematik Abitur
  3. 6 Differenzialrechnung
  4. 6.8 Näherungsverfahren zum Lösen von Gleichungen
  5. 6.8.1 Grafische Suche von Nullstellen
  6. Näherungsverfahren

Näherungsverfahren

Hier kannst du dich selbst testen. So kannst du dich gezielt auf Prüfungen und Klausuren vorbereiten oder deine Lernerfolge kontrollieren.

Multiple-Choice-Test zum Thema "Mathematik - Näherungsverfahren".

Viel Spaß beim Beantworten der Fragen!

WISSENSTEST

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.
Lernhelfer (Duden Learnattack GmbH): "Näherungsverfahren." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/index.php/schuelerlexikon/mathematik-abitur/artikel/naeherungsverfahren (Abgerufen: 20. May 2025, 21:43 UTC)

Suche nach passenden Schlagwörtern

  • Funktionen
  • Wissenstest
  • Test
  • ganzrationale Funktionen
  • Nullstelle
  • Newton
  • Bisektion
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Grafisches Lösen von Gleichungen

Gleichungen, für die exakte Lösungsverfahren nicht bekannt oder zu zeitaufwendig sind, lassen sich oft mit hinreichender Genauigkeit grafisch lösen.

Dabei geht man von der zu lösenden Bestimmungsgleichung zur entsprechenden Funktionsgleichung über, stellt (unter Verwendung eines Taschenrechners) eine Wertetabelle auf und zeichnet den Graphen der Funktion.

Die Abszissen der Schnittpunkte des Funktionsgraphen mit der x-Achse, also die Nullstellen, sind die Lösungen der Gleichung. Man liest sie näherungsweise ab. Die Genauigkeit beim Ablesen kann verbessert werden, wenn die Funktion in einem immer engeren Intervall um die Nullstelle herum dargestellt wird.

Das Vorgehen beim grafischen Lösen von Gleichungen soll im Folgenden durch ein Beispiel verdeutlicht werden.

Geronimo Cardano

* 24. September 1501 Pavia
† 21. September 1576 Rom

GERONIMO CARDANO arbeitete auf dem Gebiet der Algebra und beschäftigte sich insbesondere mit dem Lösen kubischer Gleichungen. Die nach ihm benannte Lösungsformel (die cardanische Formel) stammt allerdings vom venezianischen Rechenmeister NICCOLÒ TARTAGLIA.
CARDANOS Studie „Liber de ludo aleae“ gilt als erste systematische Untersuchung auf dem Gebiet der Wahrscheinlichkeitsrechnung.
Auf CARDANO gehen physikalische Erfindungen wie das Kardangelenk, die Kardanwelle bzw. die kardanische Aufhängung zurück. Zudem beschreib er als Erster den Verlauf der Typhuskrankheit.

Niels Henrik Abel

* 05. August 1802 Frindoe
† 06. April 1829 Froland

NIELS HENRIK ABEL gilt als Begründer der modernen Algebra. Er verfasste Arbeiten über die Lösbarkeit algebraischer Gleichungen sowie zur Theorie elliptischer Funktionen. Nach ihm benannt sind u.a. die abelschen Gruppen.

Julius Wilhelm Richard Dedekind

* 6. Oktober 1831 Braunschweig
† 12. Februar 1916 Braunschweig

RICHARD DEDEKINDS Hauptinteressen lagen auf dem Gebiet der algebraischen Zahlentheorie. Insbesondere wurde er durch seine theoretische Fundierung der reellen (irrationalen) Zahlen mithilfe des sogenannten dedekindschen Schnittes bekannt.

Dedekindscher Schnitt

Durch einen dedekindschen Schnitt t werden Zahlenmengen in ein Paar Teilmengen A und B so zerlegt, dass für jedes a ∈ A und jedes b ∈ B die Beziehung a ≤ t ≤ b gilt (wobei t eine reelle Zahl ist).
Man kann dedekindsche Schnitte in der Menge ℚ der rationalen Zahlen benutzen, um die Menge der reellen Zahlen ℝ zu definieren.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025