Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Mathematik Abitur
  3. 10 Vektoren und Vektorräume
  4. 10.6 Punkte, Strecken und Dreiecke in einem Koordinatensystem
  5. 10.6.1 Mittelpunkt M einer Strecke in der Ebene und im Raum
  6. Vektoren, Rechnen

Vektoren, Rechnen

Hier kannst du dich selbst testen. So kannst du dich gezielt auf Prüfungen und Klausuren vorbereiten oder deine Lernerfolge kontrollieren.

Multiple-Choice-Test zum Thema "Mathematik - Rechnen mit Vektoren".

Viel Spaß beim Beantworten der Fragen!

WISSENSTEST

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.
Lernhelfer (Duden Learnattack GmbH): "Vektoren, Rechnen." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/index.php/schuelerlexikon/mathematik-abitur/artikel/vektoren-rechnen (Abgerufen: 20. May 2025, 14:17 UTC)

Suche nach passenden Schlagwörtern

  • Koordinaten
  • Vektor
  • Abstand
  • Wissenstest
  • Test
  • Linearkombination
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Rechengesetze für Vektoren

Beim Vergleichen und beim Verknüpfen von Vektoren muss darauf geachtet werden, dass die Koordinatenanzahl, d.h. die Anzahl der Zeilen bei Darstellung als Spaltenvektor, übereinstimmt.
Für beliebige (n-dimensionale) Vektoren sind eine Addition sowie eine Vervielfachung mit reellen Zahlen definiert. Spezielle Produkte von Vektoren sind das Skalarprodukt sowie im dreidimensionalen Raum das Vektorprodukt und das Spatprodukt. Die Ergebnisse dieser Verknüpfungen können mithilfe der Koordinaten der zu verknüpfenden Vektoren berechnet werden.

Beweise unter Verwendung von Vektoren

Sätze der ebenen Geometrie lassen sich mithilfe von Vektoren mitunter sehr knapp und übersichtlich beweisen. Auf der Grundlage entsprechender Figuren, in denen die relevanten Stücke vektoriell gekennzeichnet werden, formuliert man Voraussetzungen und Behauptung jeweils mittels Vektoren und versucht, durch logische Schlüsse unter Verwendung der Rechengesetze für Vektoren den Beweis zu führen.
Bereits Addition und Vervielfachung von Vektoren können dabei sehr hilfreich sein, die Hinzunahme multiplikativer Verknüpfungen und deren Eigenschaften erschließen weitere Anwendungsmöglichkeiten. Die folgenden Beispiele illustrieren diese Vorgehensweise.

Kollinearität von Punkten (und Vektoren)

Punkte bezeichnet man als kollinear, wenn sie auf ein und derselben Geraden liegen. Zwei (verschiedene) Punkte sind stets kollinear, da sie eindeutig eine Gerade bestimmen.
Vektoren, deren Repräsentanten auf einer Geraden bzw. auf parallelen Geraden liegen, werden als kollineare Vektoren bezeichnet.

Die Lage eines Punktes P zu einer Geraden g (Lagebeziehung von Punkt und Gerade) kann auf verschiedene Weise untersucht werden. Im Folgenden wird dies – getrennt für die Ebene und den Raum – an Beispielen demonstriert.

Mittelpunkt einer Strecke

Eine Strecke sei durch die Koordinaten ihrer Endpunkte P 1 ( x 1 ;     y 1 ) und P 2 ( x 2 ;     y 2 ) (in der Ebene) bzw. P 1 ( x 1 ;     y 1 ;     z 1 ) und P 2 ( x 2 ;     y 2 ;     z 2 ) (im Raum) gegeben.

Um die Koordinaten des Mittelpunkts dieser Strecke zu bestimmen, kann man – und darin besteht ein Vorzug vektorieller Arbeitsweise – die Betrachtungen für die Ebene und den Raum zunächst einheitlich durchführen.

Skalarprodukt zweier Vektoren

Die Betrachtung von Anwendungsbeispielen führt zur Definition des Skalarproduktes zweier Vektoren.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025