Funktionenscharen
In Funktionsgleichungen können Parameter in additiver und multiplikativer Verknüpfung mit Funktionstermen bzw. mit der Funktionsvariablen auftreten. Aus einer Funktionsgleichung entstehen so z. B. die Gleichungen , , oder .
Diese Parameter haben Einfluss auf Eigenschaften und Verlauf der Graphen der Funktion.
Parameter können in additiver und multiplikativer Verknüpfung mit Funktionstermen bzw. mit der Funktionsvariablen auftreten. Aus einer Funktionsgleichung entstehen so z. B. die Gleichungen , , oder .
Es soll nun untersucht werden, welchen Einfluss – im Vergleich zum Graphen der Ausgangsfunktion – ein derartiger Summand bzw. Faktor auf die Eigenschaften und auf den Verlauf der Graphen der zugehörigen Funktion nimmt.
Fall 1:
Als Beispiel betrachten wir die Funktion f mit der Gleichung und untersuchen die Graphen folgender Funktionen:
Verallgemeinernd lässt si ch feststellen:
Wird zu jedem Funktionswert einer Funktion f eine Zahl c addiert, d. h., gehen wir von der Funktion zu den Funktionen über, so erhalten wir die Graphen dieser Funktionen durch Verschiebung des Graphen der Funktion f in Richtung der y-Achse um Einheiten, und zwar für in Richtung des positiven Teils, für in Richtung des negativen Teils der y-Achse.
Durch Variation von c entsteht eine durch die Gleichung beschriebene Funktionenschar – die Graphen dieser Funktionen bilden eine Graphenschar. Der Summand c wird Scharparameter genannt (interaktives Rechenbeispiel).
Fall 2:
Wir betrachten wieder die Funktion f mit der Gleichung und untersuchen jetzt die Graphen folgender Funktionen:
Ausgehend von diesem Beispiel lässt sich feststellen:
Addiert man zu jedem Argument x einer Funktion f eine Zahl d , d. h., gehen wir von der Funktion zu den Funktionen über, so ergeben sich die Graphen dieser Funktionen aus dem Graphen der ursprünglichen Funktion f durch Verschiebung in Richtung der x-Achse um Einheiten, und zwar für in Richtung des negativen Teils, für in Richtung des positiven Teils der x-Achse.
Auch in diesem Fall entsteht eine Funktionenschar , hier mit dem Scharparameter d (interaktives Rechenbeispiel).
Fall 3: ;
Die Funktion f habe wiederum die Gleichung . Wir untersuchen die Graphen folgender Funktionen:
Hier lässt sich erkennen:
Die Graphenscharen der jeweiligen Funktionenscharen entstehen in diesem Fall aus dem Graphen der Ausgangsfunktion durch Geradenstreckung.
Bei erfolgt diese Streckung senkrecht zur x-Achse mit dem Faktor ; bei ergibt sich eine Streckung senkrecht zur y-Achse mit dem Faktor .
Wählt man in den Parameter , so geht der Graph aus dem von f durch Spiegelung an der x-Achse hervor. Die Wahl von in bewirkt eine Spiegelung des Graphen von f an der y-Achse.
Durch unterschiedliches Einfügen der Parameter in die Ausgangsgleichung, durch Kombination der einzelnen Möglichkeiten und natürlich durch die Parameterwahl lassen sich aus einer Ausgangsfunktion unendlich viele „neue“ Funktionen erzeugen. Sind dabei die oben erläuterten geometrischen Zusammenhänge bekannt, so kann man die Graphen von Funktionen einer Funktionenschar ausgehend von einem Scharelement häufig relativ leicht zeichnen. Auch ist es möglich, bestimmte Eigenschaften der Funktionenschar mithilfe des Scharparameters auszudrücken.
Beispielsweise kann man für die Funktionenschar
die Nullstellen in der Form angeben.