Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Mathematik
  3. 9 Stochastik
  4. 9.2 Elemente der beschreibenden Statistik
  5. 9.2.2 Statistische Kenngrößen (bei Häufigkeitsverteilungen)
  6. Glockenförmige Häufigkeitsverteilung

Glockenförmige Häufigkeitsverteilung

Grafische Darstellungen von Häufigkeitsverteilungen sind oft symmetrisch und lassen für den Fall, dass die Anzahl der Beobachtungsergebnisse nicht zu gering ist, eine annähernd glockenförmige Gestalt erkennen. Lage und Form der „Glocke“ werden durch den Mittelwert x ¯ bzw. die Standardabweichung s bestimmt.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Grafische Darstellungen von Häufigkeitsverteilungen lassen oft eine Symmetrie erkennen. Symmetrieachse ist eine Parallele zur y-Achse durch den Mittelwert, den sogenannten Schwerpunkt der Häufigkeitsverteilung.

Ist die Anzahl der Beobachtungswerte nicht zu klein, so ergibt sich in vielen Fällen eine annähernd glockenförmige Gestalt. Die Form der „Glocke“ wird von zwei Größen bestimmt: Während sich aus dem Mittelwert x ¯ die Lage der Verteilung (im Koordinatensystem) ergibt, wird die Breite der „Glocke“ durch die Standardabweichung s bestimmt. Im Allgemeinen liegen im Intervall x ¯ − s ≤ x ≤ x ¯ + s etwa 68%, im Intervall x ¯ − 2 s ≤ x ≤ x ¯ + 2 s sogar rund 95% aller Beobachtungsergebnisse. Je kleiner also die Standardabweichung ist, desto schmaler ist die „Glocke“.

Glockenförmige Häufigkeitsverteilungen treten beispielsweise bei physikalischen Messgrößen wie Zeit, Länge usw. auf.

Lernhelfer (Duden Learnattack GmbH): "Glockenförmige Häufigkeitsverteilung." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/index.php/schuelerlexikon/mathematik/artikel/glockenfoermige-haeufigkeitsverteilung (Abgerufen: 20. May 2025, 17:04 UTC)

Suche nach passenden Schlagwörtern

  • Glocke
  • interaktiv
  • Häufigkeit
  • Mathcad
  • Standardabweichung
  • glockenförmige Häufigkeitsverteilung
  • Rechenbeispiel
  • Häufigkeitsverteilung
  • Berechnungsbeispiel
  • symmetrische Häufigkeitsverteilung
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Grafische Darstellung von Daten

Für die grafische Veranschaulichung von Daten, die durch statistische Untersuchungen gewonnen wurden, nutzt man verschiedene Möglichkeiten, die in starkem Maße durch den Charakter der darzustellenden Daten (quantitative oder qualitative Merkmale, diskrete oder stetige quantitative Merkmale usw.) bestimmt werden.
Wichtige Darstellungsarten sind Stängel-Blatt-Diagramme, Stabdiagramme (auch Strecken- oder Balkendiagramme), Blockdiagramme (Streifendiagramme), Kreisdiagramme, Histogramme (Säulendiagramme) und Polygonzüge.

Grundfrage und Grundbegriffe statistischer Erhebungen

Basis einer statistischen Erhebung ist eine Menge von Objekten, von denen ein Merkmal oder mehrere Merkmale (Merkmalskombinationen) untersucht werden.

Beurteilende Statistik

Mithilfe der beurteilenden Statistik werden aus Daten statistischer Untersuchungen Rückschlüsse auf unbekannte Größen wie Wahrscheinlichkeit oder Erwartungswert gezogen, um möglichst zweckmäßige Entscheidungen treffen zu können. Wesentliche Methoden sind das Schätzen unbekannter Größen (Parameter) auf Grundlage der Untersuchung einer Stichprobe sowie das Testen von Hypothesen.

Boxplots


Unter einem Boxplot wird ein Kastenschaubild verstanden, in dem die Häufigkeitsverteilung von Zufallsgrößen dargestellt ist. Dabei werden neben dem Zentralwert x ˜ (als dem Bezugswert) folgende weitere Kenngrößen verwendet: unterer und oberer Viertelwert Bild bzw. x 3 / 4 sowie die extremen Beobachtungswerte x min und x max .

Lagemaße

Zur Charakterisierung von Stichproben, vor allem solchen mit großem Umfang n, werden spezielle Werte (auch Maße genannt) herangezogen. Diese Kenngrößen von Häufigkeitsverteilungen ermöglichen insbesondere den Vergleich statistischer Untersuchungen.
Kenngrößen der Lage beschreiben Häufigkeitsverteilungen durch Angabe „mittlerer Werte“. Dabei ist die Wahl unterschiedlicher Mittelwerte möglich. Am bekanntesten ist das arithmetische Mittel (der Durchschnitt). Als weiteren Mittelwert benutzt man bei statistischen Untersuchungen den Zentralwert.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025