Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Physik Abitur
  3. 2 Mechanik
  4. 2.2 Kinematik
  5. 2.2.3 Gleichförmige Kreisbewegungen
  6. Gleichförmige Kreisbewegung

Gleichförmige Kreisbewegung

Eine gleichförmige Kreisbewegung liegt vor, wenn sich ein Körper immer mit dem gleichen Betrag der Geschwindigkeit auf einer kreisförmigen Bahn bewegt.
Die gleichförmige Kreisbewegung ist eine beschleunigte Bewegung, da sich ständig die Richtung der Geschwindigkeit ändert.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Erklärvideos und Übungen zur gleichförmigen Kreisbewegung gibt es hier!

Gleichförmige Kreisbewegung

Eine gleichförmige Kreisbewegung liegt vor, wenn sich ein Körper immer mit dem gleichen Betrag der Geschwindigkeit auf einer kreisförmigen Bahn bewegt (Bild 1). Bei einer solchen gleichförmigen Kreisbewegung ändert sich aber ständig die Richtung der Geschwindigkeit.

  • L. Meyer, Potsdam

Eine gleichförmige Kreisbewegung ist deshalb stets eine beschleunigte Bewegung. Für eine gleichförmige Kreisbewegung (Bild 2) gelten folgende Gesetze:
v = s t v = 2 π ⋅ r T v = 2 π ⋅ r ⋅ n

Dabei bedeuten:vGeschwindigkeit
 sWeg
 tZeit
 rRadius der Kreisbahn
 TZeit für einen Umlauf (Umlaufzeit)
 nDrehzahl

Damit sich ein Körper gleichförmig auf einer Kreisbahn bewegt, muss auf ihn eine konstante Kraft in Richtung des Drehzentrums wirken. Diese Kraft wird als Radialkraft und manchmal auch als Zentralkraft oder als Zentripetalkraft bezeichnet.

Genauere Informationen dazu sind unter dem Stichwort „Kräfte bei der Kreisbewegung“ zu finden. Die durch die Radialkraft auftretende ständige Beschleunigung in Richtung Zentrum der Kreisbewegung wird als Radialbeschleunigung bezeichnet. Eine Ableitung dieser Größe findet man in dem Beitrag „Beschleunigung“. Für die Radialbeschleunigung gilt:

a r = v 2 r     oder     a r = ω 2 ⋅ r    mit   ω = v r = 2 π ⋅ n v     Bahngeschwindigkeit r     Radius der Bahn ω    Winkelgeschwindigkeit n     Drehzahl

Mit dem newtonschen Grundgesetz F = m ⋅ a ergibt sich mit dieser Beschleunigung für die Radialkraft:
F = m ⋅ v 2 r oder F = m ⋅ ω 2 ⋅ r m Masse des umlaufenden Körpers v Bahngeschwindigkeit r Radius der Bahn ω Winkelgeschwindigkeit

Lernhelfer (Duden Learnattack GmbH): "Gleichförmige Kreisbewegung." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/index.php/schuelerlexikon/physik-abitur/artikel/gleichfoermige-kreisbewegung (Abgerufen: 21. July 2025, 17:43 UTC)

Suche nach passenden Schlagwörtern

  • Berechnung
  • Umlaufzeit
  • Radialbeschleunigung
  • Geschwindigkeit
  • gleichförmige Kreisbewegung
  • beschleunigte Bewegung
  • Drehzahl
  • Radialkraft
  • Kreisbahn
  • Zentripetalkraft
  • Zentralkraft
  • Rechenbeispiel
  • Radius
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Geladene Teilchen in elektrischen Feldern

Auf ein geladenes Teilchen wirkt im elektrischen Feld eine Kraft, die zur Beschleunigung des Ladungsträgers führt. Die Bahnkurve des Teilchens ist abhängig von der Richtung der Anfangsgeschwindigkeit. Bei einer Bewegung in Richtung oder entgegen der Richtung der Feldlinien erfolgt eine gleichmäßig beschleunigte Bewegung. Das wird z.B. genutzt, um schnelle Elektronen (einen Elektronenstrahl) zu erzeugen. Verläuft die Bewegung senkrecht zu den Feldlinien eines homogenen Feldes, dann bewegen sich die Ladungsträger auf einer parabelförmigen Bahn. Diese Ablenkung von der ursprünglichen geradlinigen Bewegung wird in Elektronenstrahlröhren zur Erzeugung von Bildern (z. B. bei Oszillografen) genutzt.

Beschleunigung-Zeit-Diagramme

In einem Beschleunigung-Zeit-Diagramm ist für die Bewegung eines Körpers der Zusammenhang zwischen seiner Beschleunigung a und der Zeit t dargestellt. Ein a-t-Diagramm für eine Bewegung mit konstantem Betrag der Geschwindigkeit (gleichförmige geradlinige Bewegung, gleichförmige Kreisbewegung) unterscheidet sich deutlich von einem a-t-Diagramm für eine Bewegung mit konstantem Betrag der Beschleunigung (gleichmäßig beschleunigte geradlinige Bewegung, freier Fall) und dieses wiederum von a-t-Diagrammen für ungleichmäßig beschleunigte Bewegungen.
Im a-t-Diagramm hat die Fläche unter dem Graphen eine physikalische Bedeutung. Sie ist gleich der Geschwindigkeit.

Geschwindigkeit-Zeit-Diagramme

In einem Geschwindigkeit-Zeit-Diagramm ist für die Bewegung eines Körpers der Zusammenhang zwischen seiner Geschwindigkeit v und der Zeit t dargestellt. Ein v-t-Diagramm für eine Bewegung mit konstantem Betrag der Geschwindigkeit (gleichförmige geradlinige Bewegung, gleichförmige Kreisbewegung) unterscheidet sich deutlich von einem v-t-Diagramm für eine Bewegung mit konstantem Betrag der Beschleunigung (gleichmäßig beschleunigte geradlinige Bewegung, freier Fall).
Im v-t-Diagramm hat der Anstieg des Graphen eine physikalische Bedeutung. Er ist gleich der Beschleunigung an der betreffenden Stelle.
Die Fläche unter dem Graphen ist gleich dem zurückgelegten Weg. Eine spezielle Art von v-t-Diagrammen sind Fahrtenschreiberdiagramme.

Gleichförmige Drehbewegung

Eine gleichförmige Drehbewegung liegt vor, wenn ein starrer Körper mit konstanter Winkelgeschwindigkeit rotiert. Beispiele dafür sind ein Riesenrad oder eine mit bestimmter Drehzahl rotierende Motorwelle. Die dafür geltenden Gesetze sind analog zu den Gesetzen für die gleichförmige Bewegung bei der Translation:
α = 0 ω = Δ ϕ Δ t ϕ = ω ⋅ t + ϕ 0

Gleichmäßig beschleunigte geradlinige Bewegung

Eine gleichmäßig beschleunigte geradlinige Bewegung liegt vor, wenn sich bei einem Körper die Geschwindigkeit in jeweils gleichen Zeiten in gleichem Maße ändert, wenn also der Betrag der Beschleunigung konstant ist.
Bei einer gleichmäßig beschleunigten geradlinigen Bewegung sind sowohl der Betrag der Beschleunigung als auch die Richtung der Beschleunigung immer gleich. Gleichmäßig beschleunigte Bewegungen können aber auch auf beliebigen anderen Bahnen erfolgen.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025