Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Physik Abitur
  3. 3 Thermodynamik
  4. 3.4 Hauptsätze der Thermodynamik
  5. 3.4.3 Der 2. und 3. Hauptsatz der Thermodynamik
  6. Wissenstest, Hauptsätze der Thermodynamik

Wissenstest, Hauptsätze der Thermodynamik

In den Hauptsätzen der Thermodynamik sind grundlegende Zusammenhänge aus diesem Teilbereich der Physik erfasst. Der 1. Hauptsatz enthält den Zusammenhang zwischen der Änderung der inneren Energie, der Wärme und der Arbeit. Er ist Grundlage für die Wirkungsweise von Wärmekraftmaschinen. Die Vorgänge bei einer solchen Maschine lassen sich als Kreisprozess beschreiben. Der zweite Hauptsatz beinhaltet eine Aussage über in der Natur mögliche Prozesse.

Im Test können zu prüfen, ob Sie wichtige Zusammenhänge verstanden haben.

Hier kannst du dich selbst testen. So kannst du dich gezielt auf Prüfungen und Klausuren vorbereiten oder deine Lernerfolge kontrollieren.

Multiple-Choice-Test zum Thema "Physik - Hauptsätze der Thermodynamik".

Viel Spaß beim Beantworten der Fragen!

WISSENSTEST

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.
Lernhelfer (Duden Learnattack GmbH): "Wissenstest, Hauptsätze der Thermodynamik." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/index.php/schuelerlexikon/physik-abitur/artikel/wissenstest-hauptsaetze-der-thermodynamik (Abgerufen: 20. May 2025, 18:37 UTC)

Suche nach passenden Schlagwörtern

  • innere Energie
  • Kreisprozesse
  • 1. Hauptsatz
  • Arbeit
  • isochore Zustandsänderung
  • Wärme
  • Entropie
  • isobare Zustandsänderung
  • isotherme Zustandsänderung
  • Ottomotor
  • Dieselmotor
  • perpetuum mobile
  • Wirkungsgrad
  • Zustandsänderungen
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Selbstorganisation

In der Natur kann man die Ausbildung vielfältiger Strukturen (Kristalle, Zellen, Wirbel, Wolkenformen) beobachten. Dabei bilden sich unter bestimmten Bedingungen aus zunächst unstrukturierten oder wenig strukturierten Zuständen Strukturen heraus. Da diese Vorgänge von selbst ablaufen, wenn die erforderlichen Bedingungen vorliegen, spricht man von Selbstorganisation. Die Theorie der Selbstorganisation, die ab etwa 1970 entwickelt wurde, bezeichnet man auch als Synergetik. Gegenstand der Synergetik ist die Erforschung der spontanen Bildung von Strukturen. Selbstorganisation bedeutet eine Erhöhung der Ordnung im System, die mit einer Entropieminderung verbunden ist.

Robert Stirling

* 25.10.1790 in Cloag, Schottland
† 06.06.1878 in Galston, Schottland

ROBERT STIRLING war ein schottischer Pfarrer, der zusammen mit seinem Bruder JAMES, einem Mechaniker, mehrere Maschinen entwickelte und patentieren ließ. 1816 meldete er mit 26 Jahren sein erstes Patent an. Die Grundidee bestand darin, den heißen Wasserdampf der Dampfmaschine durch Luft als Arbeitsmittel zu ersetzen. Zwei Jahre später baute er den ersten Heißluftmotor, die als Antrieb für eine Wasserpumpe eingesetzt wurde und eine Leistung von 2 PS (1,5 kW) lieferte.
Die Entwicklung des Stirling-Motors erfolgte ohne Kenntnis der thermodynamischen Grundlagen und ist eine geniale Ingenieurleistung.
Mitte des 19. Jahrhunderts erreichten Heißluftmotoren einen höheren Wirkungsgrad als Dampfmaschinen und wurden in größerer Zahl als Industriemotoren verwendet. Eine Verbreitung von Heißluftmotoren wurde vor allem durch das Fehlen geeigneter Materialien zur Herstellung der Zylinderköpfe und den Abdichtungen zwischen Gasraum und Getriebeteil verhindert.

Isotherme Zustandsänderungen

Nach dem 1. Hauptsatz der Thermodynamik kann eine isotherme Zustandsänderung, also eine Zustandsänderung bei konstanter Temperatur, durch folgende Prozesse realisiert werden:

  • Dem Gas wird eine Wärme Q zugeführt, es dehnt sich aus und verrichtet Volumenarbeit (isotherme Expansion).
  • An dem Gas wird die äußere Arbeit W verrichtet, das Volumen wird kleiner und die dabei entstehende Wärme wird abgegeben (isotherme Kompression).

Die bei einer isothermen Expansion vom Gas verrichtete Arbeit (Volumenarbeit) entspricht der Fläche unterhalb der Isobare im p-V- Diagramm. Sie kann durch Auszählen der Fläche oder durch Integration berechnet werden. Bei Verwendung des Modells ideales Gas beträgt die Volumenarbeit bei isothermer Expansion:

W = − N ⋅ k ⋅ T ⋅ ln V 2 V 1

Diese Arbeit ist gleich der dem Gas zugeführten Wärme, die dieses benötigt, um seine innere Energie bei der Expansion konstant zu halten.

Stirlingscher Kreisprozess

Der stirlingsche Kreisprozess, bestehend aus je zwei isothermen und isochoren Zustandsänderungen, repräsentiert die „Takte“ eines ideal arbeitenden Heißluftmotors. Dabei wird das Antriebsmittel „Luft“ als ideales Gas betrachtet und die Prozessführung als reversible angenommen.

  1. Durch Aufnahme einer bestimmten Wärme aus einem heißen Wärmespeicher erfolgt eine isotherme Expansion. Es wird die Arbeit verrichtet.
  2. Durch eine isochore Abkühlung wird die Temperatur verringert. Dabei wird Wärme abgegeben.
  3. Takt: Für die isobare Kompression muss Arbeit zugeführt werden. Die dabei entstehende Wärme Δ wird an einen kalten Wärmespeicher abgegeben.
  4. Takt: Durch eine isochore Erwärmung wird nun die Temperatur erhöht und damit der Ausgangszustand wieder erreicht. Dazu wird die Wärme zugeführt.

Die Differenz aus verrichteter und zugeführten Arbeit kann von der Maschine nach aßen abgegeben werden.

Spezielle Zustandsänderungen

Aus der allgemeinen Zustandsgleichung für das ideale Gas kann man Gleichungen für den Fall ableiten, dass eine der drei Größen konstant ist. Mit p = konstant ergeben sich Gleichungen für die isobare Zustandsänderung, mit V = konstant für die isochore Zustandsänderung und mit T = konstant für die isotherme Zustandsänderung. Die Gleichungen für diese speziellen Zustandsänderungen wurde früher gefunden als der allgemeine Fall. Nach den Wissenschaftlern, die sie entdeckten, nennt man diese Gesetze auch das Gesetz von GAY-LUSSAC, das Gesetz von AMONTONS und das Gesetz von BOYLE und MARIOTTE.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025