Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Physik
  3. 4 Elektrizitätslehre
  4. 4.5 Elektrische Leitungsvorgänge
  5. 4.5.3 Elektrische Leitung in Gasen
  6. Gasentladungslampe

Gasentladungslampe

Als Gasentladungslampen bezeichnet man Lichtquellen, deren Wirkung auf der Gasentladung beruht. Je nach Art der dabei entstehenden Gasentladung unterscheidet man zwischen Glimmlampen, Leuchtstofflampen und verschiedene Dampfdrucklampen.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Als Gasentladungslampen bezeichnet man Lichtquellen, deren Wirkung auf der Gasentladung beruht. Je nach Art der dabei entstehenden Gasentladung unterscheidet man zwischen Glimmlampen, Leuchtstofflampen und verschiedene Dampfdrucklampen.

Alle diese Lampen besitzen jedoch einen in den Hauptmerkmalen übereinstimmenden Aufbau. Ein Glasgefäß, häufig verwendet man wegen seiner Hitzebeständigkeit Quarzglas, wird mit zwei Elektroden versehen und erhält anschließend eine Gasfüllung, wobei der Gasdruck variieren kann. Mitunter sieht man in solchen Lampen auch das Kondensat der betreffenden Füllung. Beispielsweise ist in Quecksilberdampfdrucklampen auch immer ein kleines Kügelchen aus Quecksilber zu erkennen. Hat die Gasentladung in der Lampe gezündet und erhöht sich ihre Betriebstemperatur, dann verdampft das flüssige Quecksilber. In der Lampe befindet sich dann Quecksilberdampf.

Die Gasentladung in der Lampe beruht auf Ionisationsvorgängen. Erhöht man die an den Elektroden anliegende Spannung, dann werden zufällig im Gas anwesende freie Ladungsträger immer schneller zu den jeweils entgegengesetzt geladenen Elektroden beschleunigt. Treffen sie auf ihrem Weg dorthin mit neutralen Atomen zusammen, dann können sie diese ionisieren und dabei Elektronen aus den Atomhüllen herausschlagen. Der Ionisationsvorgang setzt ein, wenn die an der Gasentladungslampe anliegende Spannung immer weiter erhöht wird, weil die Ladungsträger dann immer größere kinetische Energien erlangen. Man spricht in diesem Falle von Stoßionisation.

Die durch Ionisation frei gesetzten Elektronen können ihrerseits selbst Ionisationsvorgänge auslösen - in der Gasröhre entstehen Elektronenlawinen. Die Gasentladung zündet, wenn pro Zeiteinheit mehr freie Ladungsträger gebildet werden als sich wieder zu neutralen Atomen zusammenfügen (Rekombination).

Füllt man Gasentladungslampen mit hochreinen Gasen, dann geht nach erfolgter Zündung Licht mit sehr genau festgelegten Wellenlängen von ihnen aus. Dieses Licht kann man mithilfe eines Spaltes und eines Gitters (Spektralapparat) in Form von Spektrallinien darstellen. Man nennt solche Gasentladungslampen daher auch Spektrallampen oder, nach ihrem Erfinder HEINRICH GEISSLER (1815-1879), geißlersche Röhren.

  • Ionisation durch schnelle Elektronen (Stoßionisation)
Lernhelfer (Duden Learnattack GmbH): "Gasentladungslampe." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/index.php/schuelerlexikon/physik/artikel/gasentladungslampe (Abgerufen: 10. June 2025, 23:29 UTC)

Suche nach passenden Schlagwörtern

  • Ionisationsvorgang
  • Glimmlampe
  • geißlersche Röhre
  • Gasentladungslampe
  • Dampfdrucklampe
  • Elektronenlawinen
  • Spektrallampe
  • Gasentladung
  • Leuchtstofflampe
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Feldstärke und dielektrische Verschiebung

Elektrische Felder können mithilfe von Feldlinienbildern beschrieben werden. Zur ihrer quantitativen Beschreibung nutzt man die feldbeschreibenden Größen elektrische Feldstärke und dielektrische Verschiebung. Die elektrische Feldstärke E ist definiert als Quotient aus der Kraft F, die das Feld auf einen positiv geladenen Probekörper ausübt, und dessen Ladung Q:
E → = F → Q
Die dielektrische Verschiebung D (Verschiebungsdichte) ist ein Maß für die auf einer Fläche im elektrischen Feld durch Influenz hervorgerufenen Ladung:
D = Q A
Beide Größen sind durch die elektrische Feldkonstante und die Permittivitätszahl miteinander verbunden:
D → = ε 0 ⋅ ε r ⋅ E →
Bevorzugt wird mit der elektrischen Feldstärke gearbeitet.

Fernwirkung und Nahwirkung

Ausgehend vom coulombschen Gesetz und vom Gravitationsgesetz lag die Vermutung nahe, dass Kräfte zwischen Körpern durch den Raum übertragen werden, ohne dass ein übertragendes Medium vorhanden ist. Die Kräfte wirken unmittelbar zwischen den Körpern. Man spricht deshalb von der Fernwirkung oder auch von der Fernwirkungstheorie. Sie diente lange Zeit als Arbeitshypothese zur Erklärung der elektrischen, magnetischen und Gravitationswechselwirkungen zwischen Körpern.
MICHAEL FARADAY nahm dagegen an, dass sich durch die Anwesenheit eines Körpers der Raum selbst verändert und zum Träger physikalischer Eigenschaften wird. Kräfte werden dann durch diesen Raum vermittelt. Diese Auffassung geht also von einer Nahwirkung aus. Sie wird als Nahwirkungstheorie oder als Feldtheorie bezeichnet.

Kondensatoren

Ein Kondensator ist ist elektrisches Bauelement, mit dem elektrische Ladung und damit elektrische Energie gespeichert wird. Die einfachste Form eines Kondensators ist ein Plattenkondensator, der aus zwei sich gegenüberstehenden, voneinander isolierten Metallplatten besteht, zwischen denen sich Luft befindet. Wird zwischen diesen Metallplatten eine elektrische Spannung angelegt, dann sammeln sich auf ihren Oberflächen getrennt voneinander positive und negative Ladungen an. Zwischen den Platten baut sich ein elektrisches Feld auf, in dem Feldenergie gespeichert ist. Die Kapazität eines Kondensators hängt von seinem Aufbau ab und kann in weiten Grenzen variieren. Kondensatoren können in Reihe oder parallel geschaltet werden. Sie verhalten sich im Gleichstromkreis anders als im Wechselstromkreis.

Physikalische Felder im Vergleich

Elektrische Felder, magnetische Felder und Gravitationsfelder sind dadurch gekennzeichnet, dass auf Körper mit bestimmten Eigenschaften, die sich in ihnen befinden, Kräfte ausgeübt werden. Alle drei Arten von Feldern lassen sich mithilfe des Modells Feldlinienbild beschreiben. Für jedes der Felder gibt es feldbeschreibende Größen, die teilweise in analoger Weise definiert sind. Darüber hinaus gibt es zwischen diesen drei Arten von Feldern weitere Gemeinsamkeiten, aber auch deutliche Unterschiede.

Teilchenbeschleuniger

Zur Untersuchung von Elementarteilchen und ihren Wechselwirkungen untereinander sowie mit Stoffen nutzt man Teilchenbeschleuniger unterschiedlicher Bauart. Ziel ist es, Erkenntnisse über die Struktur der Materie im subatomaren Bereich zu gewinnen. Wichtige Arten von Beschleunigern sind Linearbeschleuniger, Zyklotrone, Synchronzyklotrone und Synchrotrone.
Dabei werden geladene Teilchen (Elektronen, Protonen, Ionen) durch elektrische Felder stark beschleunigt und als „Geschosse“ genutzt. Zusätzlich kann man sie durch magnetische Felder auf kreis- bzw. spiralförmigen Bahnen halten. Die Wechselwirkungen mit anderen Teilchen oder Stoffen werden registriert und ausgewertet. Untersuchungen mit Teilchenbeschleunigern haben in den letzten Jahrzehnten zu einer erheblichen Vertiefung der Erkenntnisse über die Struktur der Materie geführt.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025