Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Physik
  3. 4 Elektrizitätslehre
  4. 4.3 Elektrische und magnetische Felder
  5. 4.3.3 Die elektromagnetische Induktion
  6. Induktivität

Induktivität

In dem magnetischen Feld einer Spule ist Energie gespeichert. Wie groß diese Energie ist, hängt von der Stärke des Stromes ab, der durch die Spule fließt und von den geometrischen Eigenschaften der Spule sowie den Materialeigenschaften des Spulenkerns. Diese geometrischen und stofflichen Eigenschaften einer Spule fasst man als Induktivität L einer Spule zusammen.

Formelzeichen:
Einheit:

L
1 H (1 Henry) = 1   m 2 ⋅ k g ⋅ s − 2 ⋅ A − 2

 

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

In dem magnetischen Feld einer Spule ist Energie gespeichert. Wie groß diese Energie ist, hängt von der Stärke des Stromes ab, der durch die Spule fließt, und von den geometrischen Eigenschaften der Spule sowie den Materialeigenschaften des Spulenkerns. Diese geometrischen und stofflichen Eigenschaften einer Spule fasst man als Induktivität L einer Spule zusammen.

Formelzeichen:
Einheit:
L
1 H (1 Henry) = 1   m 2 ⋅ k g ⋅ s − 2 ⋅ A − 2

Die Einheit ist nach dem amerikanischen Physiker JOSEPH HENRY (1797-1878) benannt worden. Die Induktivität einer langen geraden Spule hängt im Einzelnen von folgenden Eigenschaften der Spule ab:
Länge der Spule (l), Anzahl der Windungen (N), Größe der Querschnittsfläche der Spule (A), magnetisches Verhalten des Materials des Spulenkerns, ausgedrückt durch die Permeabilität μ r des verwendeten Stoffes.

Die Berechnungsgleichung für die Induktivität einer langen geraden Spule lautet:

L = μ 0 ⋅ μ r ⋅ N 2 ⋅ A l

Je größer die Induktivität einer Spule ist, desto mehr magnetische Feldenergie kann sie speichern. Dies kommt in der Berechnungsgleichung für die magnetische Energie eines Spulenfeldes zum Ausdruck. Diese Gleichung lautet:

E = 1 2 ⋅ L ⋅ I 2

Dabei sind L die Induktivität der Spule und I die elektrische Stromstärke.

Lernhelfer (Duden Learnattack GmbH): "Induktivität." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/index.php/schuelerlexikon/physik/artikel/induktivitaet (Abgerufen: 20. May 2025, 20:49 UTC)

Suche nach passenden Schlagwörtern

  • Querschnittsfläche
  • Induktivität
  • Spulenlänge
  • magnetische Feldenergie
  • Windungen
  • gerade lange Spule
  • Henry
  • Permeabilität
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Magnetische Flussdichte und magnetische Feldstärke

Ein magnetisches Feld kann man mit dem Modell Feldlinienbild kennzeichnen. Quantitativ lässt es sich durch die feldbeschreibenden Größen magnetische Flussdichte und magnetische Feldstärke charakterisieren. Die magnetische Flussdichte B, die heute vorzugsweise verwendet wird, ist folgendermaßen definiert:
B = F Ι ⋅ l
Die magnetische Feldstärke H ist mit der magnetischen Flussdichte folgendermaßen verknüpft:
B = μ 0 ⋅ μ r ⋅ H

Das Induktionsgesetz

Das Induktionsgesetz ist ein grundlegendes physikalisches Gesetz und die Grundlage für die Wirkungsweise solcher Geräte wie Transformatoren und Generatoren. In Worten kann man es so formulieren:
In einer Spule wird eine Spannung induziert, wenn sich das von der Spule umfasste Magnetfeld ändert. Der Betrag der Induktionsspannung ist umso größer, je schneller sich das von der Spule umfasste Magnetfeld ändert.
Eine allgemeine mathematische Formulierung des Induktionsgesetzes lautet:
U i = − N ⋅ d φ d t oder U i = − N ⋅ d ( B ⋅ A ) d t
Aus dieser allgemeinen Formulierung kann man alle wesentlichen Spezialfälle ableiten, insbesondere auch diejenigen, die der Wirkungsweise von Transformatoren und Generatoren zugrunde liegen.

Magnetfeld der Erde

Unsere Erde ist ein großer Magnet. Allerdings ist die mittlere Stärke des Magnetfeldes der Erde relativ gering. Sie beträgt nur etwa 50 mT. Trotz dieses geringen Wertes richtet sich eine frei bewegliche Magnetnadel entsprechend des Verlaufes der Feldlinien aus. Da die geografischen Pole und die Magnetpole der Erde in grober Näherung eine ähnliche Lage haben, kann die Ausrichtung einer Magnetnadel zur Bestimmung der Himmelsrichtung mithilfe eines Kompasses genutzt werden. Das Feld in der Nähe der Erdoberfläche ähnelt dem eines Stabmagneten, in größerer Entfernung treten aufgrund des Sonnenwindes erhebliche Verformungen auf.
Die Lage der Magnetpole ist nicht konstant. In großen Zeiträumen können auch Umpolungen des Erdmagnetfeldes auftreten.

Magnetische Flaschen und magnetische Linsen

Geladene Teilchen, die sich in einem Magnetfeld bewegen, werden durch dieses Magnetfeld aufgrund der dann wirkenden LORENTZ-Kraft beeinflusst. Unter geeigneten Bedingungen bilden die geladenen Teilchen geschlossene Bahnen, werden also durch das Magnetfeld in einem bestimmten Raumbereich gehalten. Man spricht dann von einer magnetischen Flasche.
Die Beeinflussung von bewegten geladenen Teilchen durch Magnetfelder kann auch genutzt werden, um Anordnungen zu schaffen, die auf Elektronen oder andere geladene Teilchen ähnlich wie eine optische Linse wirken. Man spricht dann von einer magnetischen Linse, die z.B. bei Elektronenmikroskopen oder Fernsehbildröhren angewendet wird.

Magnetschwebebahn

Bei der Magnetschwebebahn übernehmen magnetische Kräfte die Aufgaben, die bei der herkömmlichen Eisenbahn Schiene und Räder erfüllen: Sie tragen das Gewicht des Zuges, sorgen für seitliche Führung und übertragen die Antriebs- und Bremskräfte. Zu unterscheiden sind dabei drei verschiedene Techniken des magnetischen Schwebens: das elektromagnetische Schweben (EMS), das seit 1977 in Deutschland weiterentwickelt wird, das in Japan favorisierte elektrodynamische Schweben (EDS) und das permanentmagnetische Schweben (PMS).
2002 wurde der Versuchsbetrieb des in Deutschland entwickelten Transrapid auf der ersten Strecke in Schanghai aufgenommen. Geplant sind auch Strecken im Ruhrgebiet (Metrorapid) und in München als Verbindungsstrecke zwischen Flughafen und Stadtzentrum.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025