Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Physik
  3. 4 Elektrizitätslehre
  4. 4.3 Elektrische und magnetische Felder
  5. 4.3.2 Das magnetische Feld
  6. Magnetisches Feld

Magnetisches Feld

Ein magnetisches Feld ist der Zustand des Raumes um Magnete, durch den auf andere Magnete oder Stoffe mit magnetischen Eigenschaften Kräfte ausgeübt werden.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Ein magnetisches Feld ist der Zustand des Raumes um Magnete, durch den auf andere Magnete oder Stoffe mit magnetischen Eigenschaften Kräfte ausgeübt werden.

Im Raum um einen Magneten wirken auf andere Magnete oder auf andere Stoffe mit magnetischen Eigenschaften Kräfte. Diese Kräfte gehen vom magnetischen Feld aus, das jeden Magneten umgibt. Ähnlich wie beim elektrischen Feld werden durch einen Magneten die Eigenschaften des Raumes um ihn herum verändert. Diese veränderten Eigenschaften sind messbar und zeigen sich vor allem darin, dass der Raum in der Lage ist, eine Kraftwirkung auf weitere Magneten auszuüben. Änderungen in der Stärke des magnetischen Feldes breiten sich mit Lichtgeschwindigkeit (c = 300 000 km/s) durch den Raum hindurch aus. Sie verursachen immer das Auftreten eines elektrischen Feldes.

Magnetische Felder kann man sich mithilfe von Feldlinien veranschaulichen. Untersucht man in Experimenten die Kraftwirkung eines Magnetfeldes auf einen kleinen Probemagneten, dann ergeben sich folgende Resultate:

  • Magnetfeld um einen Stabmagneten, veranschaulicht mit Eisenfeilspänen

    Lothar Meyer, Potsdam

1. Jeder Magnet besitzt zwei Stellen, an denen die Kraft auf einen Probekörper besonders groß ist. Man nennt diese Stellen magnetische Pole des Feldes.

2. An einer dieser Stellen wird der Probemagnet angezogen, an der anderen Stelle wird er abgestoßen. Aus diesem Grund unterscheidet man zwischen dem magnetischen Nordpol und dem magnetischen Südpol. Dabei gilt: Gleichnamige Pole stoßen sich ab, ungleichnamige Pole ziehen sich an.

3. Wenn man zwei anziehende Magnete frei gibt, bewegen sie sich beschleunigt aufeinander zu. Nach dem Satz von der Energieerhaltung, muss die kinetische Energie der bewegten Magneten aus einer anderen Energieform stammen. Daher ist davon auszugehen, dass im Magnetfeld Energie gespeichert ist. Man nennt diese Energie magnetische Energie.

  • Kräfte zwischen Magnetpolen

Insgesamt ergeben sich folgende Eigenschaften von Magnetfeldern.

  • Magnetfelder üben eine Kraft auf andere Magnete oder magnetische Stoffe aus.
  • Änderungen im Magnetfeld breiten sich mit Lichtgeschwindigkeit aus.
  • Jedes Magnetfeld hat einen Nord- und einen Südpol. Noch nie hat man ein Magnetfeld beobachtet, das nur einen Pol besessen hat. Solche Felder gibt es nicht.
  • In magnetischen Feldern ist Energie gespeichert.
  • Anziehende Kräfte zwischen Magnetpolen
Lernhelfer (Duden Learnattack GmbH): "Magnetisches Feld." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/index.php/schuelerlexikon/physik/artikel/magnetisches-feld (Abgerufen: 29. June 2025, 21:46 UTC)

Suche nach passenden Schlagwörtern

  • elektrisches Feld
  • magnetische Energie
  • Magnetisches Feld
  • Raumeigenschaften
  • Magnet
  • Lichtgeschwindigkeit
  • Feldlinien
  • magnetische Pole
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Charles Augustin de Coulomb

* 14.06.1736 in Angouleme (Südfrankreich)
† 23.08.1806 in Paris

COULOMB war französischer Physiker, der sich große Verdienste um die Entwicklung der Elektrizitätslehre erworben hat. Er entdeckte u.a. das coulombsche Gesetz, das eine quantitative Aussage über die Kraftwirkung auf geladene Körper im elektrischen Feld gestattet. Damit und mit anderen Untersuchungen führte maßgeblich quantitative Betrachtungen in die Elektrizitätslehre ein und knüpfte damit an NEWTONs Vorgehen an.

Hans Christian Oersted

* 14.08.1777 in Rudkoebing
† 09.03.1851 in Kopenhagen

Er war ein dänischer Physiker und Chemiker und war als Professor für Physik in Kopenhagen tätig. Im Jahre 1820 entdeckte er die magnetische Wirkung elektrischer Ströme und damit den Zusammenhang zwischen Elektrizität und Magnetismus.

Elektrisches Feld der Erde

Neben einem magnetischen Feld besitzt die Erde auch ein elektrisches Feld. Da die Erdoberfläche negativ gegenüber der umgebenden Atmosphäre geladen ist, verlaufen die Feldlinien im Idealfall senkrecht zur Erdoberfläche und von dieser weg. Das elektrische Feld der Erde kann näherungsweise als Radialfeld angesehen werden. Die Feldstärke beträgt in Erdbodennähe im Durchschnitt 130 V/m. Durch Bebauung, Bäume und natürliche Unebenheiten treten erhebliche Deformationen des elektrischen Feldes der Erde auf, die durchaus auch von praktischer Bedeutung sind, etwa im Hinblick auf den Blitzschutz und das Auftreten weiterer luftelektrischer Erscheinungen wie Elmsfeuer.

Elektrisches Potenzial und elektrische Spannung

Ähnlich wie beim Gravitationsfeld wird auch beim elektrischen Feld ein Potenzial definiert. Unter dem elektrischen Potenzial eines Punktes versteht man den Quotienten aus der potenziellen Energie in diesem Punkt und der Ladung des Körpers. Sein Betrag hängt nur vom Ort und von der felderzeugenden Ladung ab. Das Potenzial ist demzufolge geeignet, ein Feld zu beschreiben. Das kann auch grafisch mit Äquipotenziallinien in der Ebene oder Äquipotenzialflächen im Raum erfolgen.
Die elektrische Spannung zwischen zwei beliebigen Punkten eines elektrischen Feldes ist gleich der Potenzialdifferenz zwischen diesen beiden Punkten.

Feldstärke und dielektrische Verschiebung

Elektrische Felder können mithilfe von Feldlinienbildern beschrieben werden. Zur ihrer quantitativen Beschreibung nutzt man die feldbeschreibenden Größen elektrische Feldstärke und dielektrische Verschiebung. Die elektrische Feldstärke E ist definiert als Quotient aus der Kraft F, die das Feld auf einen positiv geladenen Probekörper ausübt, und dessen Ladung Q:
E → = F → Q
Die dielektrische Verschiebung D (Verschiebungsdichte) ist ein Maß für die auf einer Fläche im elektrischen Feld durch Influenz hervorgerufenen Ladung:
D = Q A
Beide Größen sind durch die elektrische Feldkonstante und die Permittivitätszahl miteinander verbunden:
D → = ε 0 ⋅ ε r ⋅ E →
Bevorzugt wird mit der elektrischen Feldstärke gearbeitet.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025