Direkt zum Inhalt

993 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Drosophila – Modellorganismus der Genetik

Drosophila melanogaster gilt als ideales Versuchstier für genetische und entwicklungsphysiologische Forschungen. Voraussetzungen dafür sind ihre leichte Züchtbarkeit in kleinen Gläschen, eine geringe Generationsdauer von etwa 10 Tagen und eine hohe Nachkommenzahl von etwa 400 pro Generation. Das Erbmaterial besteht nur aus 4 Chromosomenpaaren, die in den Speicheldrüsen besonders groß als Riesenchromosomen ausgebildet sind. Genetische Forschungen werden dadurch wesentlich vereinfacht. Viele Mutationen des Erbguts zeigen sich deutlich im Phänotyp (z. B. Augenfarbe, Flügelgröße). Dadurch ist Drosophila einer der am besten erforschten Organismen.

Artikel lesen

Vom Gen zum Protein

Ein Gen ist eine abgegrenzte Funktionseinheit des genetischen Materials. Seine Basensequenz bestimmt die Struktur von Proteinen und RNA-Molekülen (tRNA, rRNA, mRNA). Diese sogenannten Strukturgene werden hinsichtlich ihrer Aktivität durch Kontrollgene reguliert. Die Informationskapazität eines Gens ist praktisch unbegrenzt.

Artikel lesen

Genexpression bei Hefepilzen (Experimentalanleitung)

Der Begriff Genexpression umfasst ganz allgemein die Realisierung der genetischen Information der DNA durch die Umwandlung und Herstellung funktioneller Proteine, d. h. genauer formuliert die im Verlauf der Transkription stattfindende Bildung von tRNA, rRNA und mRNA sowie die darauf aufbauende Translation reifer mRNA-Sequenzen zu Proteinen. Ein wesentlicher Teil dieses Prozesses ist die Proteinbiosynthese, die als Endergebnis die lebensnotwendigen Proteine bereitstellt. Die vollständige Ausprägung der genetischen Information führt zur Entwicklung des speziellen Phänotyps eines Organismus. Die Ausbildung eines Merkmals wird meist durch mehrere miteinander in Wechselwirkung stehende Gene kontrolliert und hängt darüber hinaus zum Teil auch von Umwelteinflüssen ab. Die nachfolgend beschriebenen Experimente dienen dem Nachweis einer speziell ausgeprägten Nahrungsbevorzugung bei Hefepilzen.

Artikel lesen

Genkartierung

Mitte der 80er-Jahre tauchten in den USA die ersten Ideen auf, das menschliche Genom zu entschlüsseln. Man versprach sich davon, das Zusammenspiel der Gene untereinander und mit der Umwelt besser zu verstehen. Die Prophylaxe, Diagnostik und Therapie vieler weitverbreiteter Krankheiten, wie Herz-Kreislauf-Erkrankungen, Krebs, Diabetes oder Infektionskrankheiten, soll durch Kenntnisse aus der Genomforschung entscheidend verbessert werden. Der offizielle Beginn des Genomprojekts war 1990. Die vollständige Entschlüsselung des menschlichen Erbguts war 2003 abgeschlossen. Die wesentlich komplizierteren Forschungen zu den Funktionen, Regulationen und Wechselwirkungen der Gene schließen sich an das Humangenomprojekt an.

Artikel lesen

Beweis des Zufallscharakters von Genmutationen

Laut biologischer Definition sind Mutationen spontane, d. h. natürlich verursachte, oder durch Mutagene induzierte Veränderungen des Erbguts (Veränderung der Basensequenz), die sich möglicherweise phänotypisch zeigen. Die Bezeichnung „Mutation“ wurde um 1901 von HUGO DE VRIES eingeführt. Cytologisch lassen sich Mutationen in 3 Gruppen einteilen: Genommutationen, Chromosomenmutationen und Genmutationen oder Punktmutationen. MAX DELBRÜCK (1906-1981) und SALVADOR LURIA (1912-1991) bewiesen in ihren Experimenten 1943 sowie JOSHUA LEDERBERG (1925-2008) 1952 die spontane Entstehung von Mutationen und die Nichtausrichtung auf einen bestimmten Adaptationswert.

Artikel lesen

Anwendungen der Gentechnik

Der Einsatz transgener Organismen in der Industrie, der Landwirtschaft, dem Umweltschutz, der Forschung und der Medizin wird immer vielfältiger. Sie können u. a. zur Stoffproduktion, wie z. B. für Medikamente oder Enzyme, zur Qualitätsverbesserung und Ertragssicherung von lanwirtschaftlichen Erzeugnissen, zur Beseitigung von Umweltverschmutzungen, aber auch zur Diagnostik und Therapie in der Medizin eingesetzt werden.

Artikel lesen

Untersuchungsmethogen in der Gentechnik

Die Wissenschaft von der gezielten Veränderung von Genen wird als Gentechnologie, ihre praktische Anwendung als Gentechnik bezeichnet. Die Gentechnik reicht durch ihre Ergebnisse in vielfältige Bereiche von Wissenschaft und Wirtschaft, wie Medizin, Pharmazie und Landwirtschaft.
Seit den 70er-Jahren des letzten Jahrhunderts wurde eine Vielzahl von genetisch-molekularbiologischen Verfahren entwickelt, die Voraussetzungen für die Gentechnik schufen.

Artikel lesen

Gentechnologie

Es gibt seit der Diskussion über Atomenergie kein anderes Thema, welches Nationen so sehr spaltet wie die Gentechnologie. Laut Umfragen lehnen 75 % der Bevölkerung in Deutschland Gentechnologie in der Nahrung und auf dem Acker ab. Dagegen befürwortet etwa der gleiche Anteil den Einsatz von Gentechnologie in der Medizin.

Artikel lesen

Gentherapie

Eine neue Methode zur Behandlung genetisch bedingter Krankheiten ist die Gentherapie. Hierbei werden „gesunde“ Gene in das Erbgut der Patienten übertragen, um den Funktionsausfall defekter Gene zu kompensieren und somit die Krankheit zu heilen. Mithilfe der Gentherapie können bestimmte genetische Defekte behandelt werden. Dabei liegt ein genetischer Defekt vor, wenn bei einem Lebewesen ein Gen fehlt, defekt ist oder die beabsichtigte Funktion nicht erfüllt. Bei einer Gentherapie werden dem Körper einige Zellen entnommen. Diese Zellen erhalten das neue (therapeutische) Gen und werden danach wieder in den Körper eingebracht. Das Ziel einer Gentherapie besteht darin, in die genetische Information einer Körperzelle Erbsubstanz künstlich einzuschleusen. Für den ungezielten Transfer gibt es verschiedene Methoden (Vektoren), um ein therapeutisches Gen in eine Zelle zu transportieren. Im engeren Sinn wird dieser Ansatz auch als somatische Gentherapie bezeichnet (vom griechischen „Soma“ für Körper). Das veränderte Erbmaterial bleibt dabei auf das Gewebe oder den Körper des behandelten Menschen beschränkt, im Gegensatz zu einer in Deutschland als sogenannte „Keimbahntherapie“ nicht erlaubten Veränderung an Ei- oder Samenzellen, die weitervererbt werden könnte.

Artikel lesen

Herbstzeitlose, Colchicin

Das Gift der Herbstzeitlosen, das Colchicin, hemmt die Ausbildung von Mikrotubuli, da es sich an ihre Bausteine (Tubulindimere) bindet. Dadurch werden Mitose bzw. Meiose gehemmt. Dies ermöglicht die Herstellung von Karyogrammen (bildliche Darstellung der sortierten Chromosomen) mit Metaphasechromosomen. Das Gift kann aber auch zum Auslösen von Polyploidiemutationen in der Pflanzenzüchtung genutzt werden.

Artikel lesen

Geschlechtsbestimmung bei Honigbienen

Ein Bienenstaat besteht aus einer Königin (weiblich, fertil), wenigen Drohnen (männlich, fertil) und vielen Arbeiterinnen (weiblich, steril). Sie haben alle charakteristische Körpermerkmale. Zwischen ihnen besteht eine genau festgelegte Arbeitsteilung. Das Geschlecht (ob weiblich oder männlich) wird bei Bienen genotypisch bestimmt. Ob die weiblichen Tiere allerdings fertil (fruchtbar) oder steril (unfruchtbar), d. h. Königinnen oder Arbeiterinnen werden, wird modifikativ (durch äußere Einflüsse) bestimmt.

Artikel lesen

Hox- bzw. Homeobox-Gene

Mitverantwortlich für die phänotypische Merkmalsausprägung bei lebenden Organismen sind die sogenannten Hox-Gene (Steuergene). Sie steuern die Verteilung bestimmter Zellgruppen in einem bestimmten Areal des Körpers während der Embryonalentwicklung und sind als Hauptschalter für die Realisierung der Baupläne aller Tiere zuständig. Acht dieser sogenannten Hox-Gene wurden, dicht angeordnet, auf einem Chromosom gefunden. Die Besonderheit der Hox-Gene oder Homöotischen Gene ist die Tatsache, dass von ihnen mehrere andere, funktionell zusammenhängende Gene im Verlauf der Embryonalentwicklung bzw. Morphogenese gesteuert werden. Man kann Hox-Gene als übergeordnete genetische Informationsstruktur ansehen, da sie die Entwicklung nicht direkt, sondern durch Regulation anderer Gene steuern.

Artikel lesen

Landkärtchen, Saisondimorphismus

Saisondimorphismus bedeutet soviel wie „Das Auftreten zweier (di) verschiedener Erscheinungsformen (Morphen) bei Individuen einer Art in Abhängigkeit von der Jahreszeit (Saison)". Beim Landkärtchen (Araschnia levana), einer Tagfalterart, können sich im Jahr zwei Generationen entwickeln. Ihren Namen tragen sie aufgrund der fein strukturierten Zeichnung ihrer Flügelunterseiten. Die Schmetterlinge der Frühjahrs- und der Sommerform sind unterschiedlich gestaltet. Dieser Saisondimorphismus, eine umschlagende Modifikation, wird durch die Tageslänge während des Raupenwachstums bestimmt. Bei Tageslängen über 16 Stunden entstehen dunkle Formen, sind die Tage kürzer, werden es helle Falter.

Artikel lesen

Johann Gregor Mendel

* 22.07.1822 in Hyncice
† 06.01.1884 in Brno

JOHANN GREGOR MENDEL wurde in Hyncice (Heinzendorf) als Sohn eines fronpflichtigen Bauern geboren. Dieser hielt im Garten seines Hauses Bienen und züchtete edle Obstsorten. Im Jahr 1843 trat MENDEL als Mönch in das Augustinerkloster zu Brno (Brünn) ein. Er studierte Theologie in Brünn und Naturwissenschaften in Wien. 1855 begann MENDEL mit seinen Kreuzungsexperimenten an Erbsen. 1865 hielt er seinen Vortrag über die Resultate der Kreuzungsexperimente an Erbsen vor dem „Naturforschenden Verein in Brünn“. Im Jahr 1866 wurden seine Erkenntnisse auf 43 Seiten unter dem Titel „Versuche über Pflanzen-Hybride“ veröffentlicht.

Artikel lesen

Das MESELSON-STAHL-Experiment

Bei der Vererbung wird das genetische Material der Eltern auf die nachfolgende Generation weitergegeben. Die genetische Information liegt in der DNA in Basenpaaren aus Nucleotiden verschlüsselt vor. Die Synthese der neuen DNA erfolgt durch Auftrennung und identisches Kopieren des Elternstrangs. Jeder Einzelstrang ergänzt seinen jeweils komplementären Strang. Lange war man sich des genauen Mechanismus der DNA-Verdoppelung (Replikation) nicht sicher. Im Jahr 1958 bewiesen MATTHEW MESELSON (*1930) und FRANKLIN WILLIAM STAHL (*1929) den semikonservativen Replikationsmechanismus der DNA, den zuvor WATSON und CRICK, die Erforscher der DNA-Doppel-Helix-Struktur, schon vermuteten. Von drei zur damaligen Zeit möglichen Hypothesen konnten sie in ihrem klassischen Experiment eine bestätigen.

Artikel lesen

Monoklonale Antikörper

Gewöhnlich wirken vielfältige Strukturen auf der Oberfläche von Viren, Bakterien und anderen Erregern als Epitope (sie reagieren jeweils mit einem spezifischen Antikörper), sodass im Organismus als Abwehrreaktion meist ein Gemisch aus verschiedenen Antikörpern gebildet wird. Es werden also unterschiedliche B-Lymphozyten zur Klonbildung und damit Vermehrung aktiviert.
Monoklonale Antikörper sind im Gegensatz zu herkömmlichen Seren hochspezifisch und nur gegen eine einzige antigene Determinante des verwendeten Erregers gerichtet. Sie entstehen sozusagen aus einer B-Zelle. Die Produktion monoklonaler Antikörper erfolgt mit der sogenannten Hybridomtechnik. Dabei erfolgt eine Zellverschmelzung zwischen dem Antikörper produzierenden Lymphozyten und langlebigen teilungsaktiven Tumorzellen. Die entstehenden Hybridzellen zeichnen sich sowohl durch die Antikörperbildung als auch durch eine unbegrenzte Teilungsfähigkeit aus.
Der Einsatz menschlicher monoklonaler Antikörper in der Therapie von akuten Infektionskrankheiten, für die noch keine wirksamen Antibiotika oder Chemotherapeutika existieren (z. B. Malaria), könnte die Pharmakologie revolutionieren. Perspektivisch wird der Einsatz monoklonaler Antikörper auch die Tumordiagnostik bereichern, um über veränderte spezifische Oberflächenmarker diese entarteten Zellen nachzuweisen.

Artikel lesen

Thomas Hunt Morgan

* 25.09.1866 in Lexington (Kentucky)
† 04.12.1945 in Pasadena (Kalifornien)

Der US-amerikanische Biologe THOMAS HUNT MORGAN gilt als „Vater der Genforschung“. Seit 1907 experimentierten er und seine Mitarbeiter an der New Yorker Columbia University mit Züchtungen der Frucht- oder Taufliege Drosophila melanogaster. Zunächst, um die wiederentdeckten Aussagen GREGOR MENDELs (1822-1884) kritisch zu überprüfen. Im Mai 1910 machte MORGAN in seinem „Fliegenzimmer“ einen ungewöhnlichen Fund: in einem der Versuchsgläser schwirrte eine männliche Mutante mit weißen statt üblicherweise roten Augen. Diese Merkmalsausprägung übertrug sich auch auf ihre männlichen Nachkommen. MORGAN gelang es, das entsprechende Gen auf dem X-Chromosom der Fliege zu lokalisieren. Der erste Schritt zur modernen Genetik war getan.

Artikel lesen

Kary Banks Mullis

* 28.12.1944 in Lenoir, North Carolina (USA)

KARY BANKS MULLIS arbeitete von 1979 bis 1986 als DNA-Chemiker bei der Cetus Corporation in Emeryville, Kalifornien und entwickelte dort die Methode der Polymerase-Kettenreaktion, mit deren Hilfe man in kurzer Zeit aus kleinsten DNA-Mengen Millionen von Kopien herstellen kann. Dafür erhielt er 1993 den Nobelpreis für Chemie. Mittlerweile wird die PCR-Methode in den unterschiedlichsten Bereichen der modernen biologischen Forschung angewandt, von der Paläobiologie über die Evolutionsforschung bis zur forensischen Biologie (genetischer Fingerabdruck). MULLIS hat einige weitere bahnbrechende Patente erfunden. Er erhielt zahlreiche nationale und internationale Preise. Derzeit forscht er am Children´s Hospital and Research Institute in Oakland, Kalifornien. Außerdem ist er wissenschaftlicher Berater verschiedener Gentechnikunternehmen und Gastdozent mehrerer Hochschulen.

Artikel lesen

Nachweis der Nichterblichkeit von Modifikationen

Die speziellen Merkmale eines Lebewesens werden durch Vererbung und Umwelteinflüsse geprägt. Wenn sich innerhalb einer Familie mit demselben Genotyp unter Mitwirkung von Außenbedingungen abweichende Erscheinungsformen innerhalb der Individuen ausbilden, nennt man diese Erscheinung variable Phänotypen. Diese umweltbedingte Variabilität von Lebewesen bezeichnet man auch als Modifikabilität, die unterschiedlichen Varianten sind Modifikationen.
Durch Klonierung genetisch identischer Individuen kann die Nichterblichkeit von Modifikationen und damit der Einfluss der Umwelt auf die Ausprägung von Merkmalen nachgewiesen werden. Als Ergebnis erhält man eine gleiche Verteilung der Merkmalsvariationen unter gleichen Umweltbedingungen.

Artikel lesen

Nitrit-Ionen als Mutagene

Nitrit-Ionen sind ein wichtiges Zwischenprodukt des Stickstoffkreislaufs der Natur. Lebewesen sind ihnen ständig ausgesetzt. In der Mundhöhle können sie auch aus Nitrat-Ionen reduziert werden. In weiterführenden Stoffwechselprozessen reagieren diese Ionen mit Aminen zu Nitrosaminen. Aus ihnen entstehen Carbenium-Ionen, die die DNA-Stickstoffbasen methylieren. Bei Nichtreparatur können diese DNA-Schäden Mutationen auslösen.

Artikel lesen

Nucleinsäuren als Träger und Speicher der genetischen Information

Das Wissen über die chemische Struktur von Nucleinsäuren ist eine wichtige Voraussetzung für das Verständnis der Funktion von DNA als Speicher der Erbinformation und der RNA als funktionelles Molekül bei der Genexpression. Anfang des 20. Jahrhunderts wurde entdeckt, dass Nucleinsäuren vier Typen von Nucleotiden enthalten, die aus einer stickstoffhaltigen Base, einer Phosphatgruppe und einer Pentose (Zucker mit fünf Kohlenstoffatomen) bestehen. DNA wird durch enzymatische Polymerisation aufgebaut. Ein DNA-Strang dient dabei als Matrize für die Synthese eines neuen Strangs. Die Nucleotidbausteine werden durch komplementäre Basenpaarung positioniert und durch eine Polymerase mit dem benachbarten Nucleotid verknüpft, um den neuen Strang aufzubauen.

Artikel lesen

Plastom und Chondrom

Die genetische Information eines eukaryotischen Organismus ist vorwiegend in Form von DNA in den Chromosomen eines jeden Zellkerns lokalisiert. Außerdem enthalten Plastiden und Mitochondrien DNA und somit Erbinformation, und auch im Cytoplasma können Erbfaktoren vorliegen. Die Weitergabe solcher genetischen Informationen wird als extrachromosomale (außerhalb der Chromosomen stattfindende) Vererbung bezeichnet. Die Gesamtheit der Chromosomen-DNA heißt auch Genom, die DNA außerhalb des Zellkerns bildet das Plasmon. Nach der Unterscheidung von Plastiden- und Mitochondrien-DNA spricht man daher von Plastom als Gesamtheit der Gene aller Plastiden einer Zelle und Chondrom als Gesamtheit der Erbinformation aller Mitochondrien einer Zelle.
Grundlegend trägt die DNA von Mitochondrien und Plastiden zur Zellfunktion der Eukaryotenzelle bei. Besonders Enzyme des Energiestoffwechsels sind in ihnen codiert. Jedoch sind Mitochondrien und Plastiden nicht selbstständig lebensfähig, sondern funktionieren nur im engen Zusammenspiel mit dem Zellkern. Beispielsweise sind Teile der Mitochondrienmembran im Kern codiert und müssen erst in die Organellen transportiert werden.

Artikel lesen

Retroviren

Virus-Partikel bestehen generell aus einer Nucleinsäure (DNA oder RNA) und einer sie umgebenden Proteinhülle. Die Proteinhülle wird als Capsid, die Einheit von Capsid und Erbmaterial als Nucleocapsid bezeichnet. Zusätzlich kann das Nucleocapsid von einer Hüllmembran (Virushülle) umgeben sein. Das Capsid besteht ebenfalls aus Untereinheiten, den Capsomeren und ist meist symmetrisch aufgebaut. Viele kugelförmig erscheinenden Viren sind Polyeder. Die bevorzugte Polyederform ist das Eikosaeder (Zwanzigflächner), ein von 20 gleichseitigen Dreiecken begrenzter Körper mit 12 Ecken.
Retroviren gehören zu den Eikosaedern mit zusätzlicher Hüllmembran und enthalten ein einzelsträngige, positiv geladenes RNA-Genom. Die Bezeichnung Retroviren bezieht sich auf die Beteiligung der reversen Transkriptase – eine virusspezifische DNA-abhängige DNA-Polymerase – an ihrer Vermehrung. Die Vermehrung der eigentlich nicht infektiösen RNA dieser Viren erfolgt nämlich nicht nur durch die bloße Verdoppelung des vorhandenen Erbmaterials, sondern durchläuft zunächst die Transkription in eine doppelsträngige DNA, die anschließend in ein Chromosom der Wirtszelle integriert wird.
Retroviren sind unter Menschen und Tieren weit verbreitet und können Gene besitzen, die nach Integration in die Wirts-DNA onkogene Wirkung zeigen. Zu den Retroviren gehört beispielsweise das HI-Virus. Des Weiteren sind sie auch an der Tumorbildung bei Tieren beteiligt.

Artikel lesen

Die Robertson-Translokation als Ursache des Down-Syndroms

Die Robertson-Translokation stellt eine spezielle Form der Translokationsmutation dar und kann zum dreifachen Vorhandensein der Erbinformationen des Chromosoms 21 beim Menschen führen (Chromosomenaberration). Als Folge davon entsteht das Down-Syndrom. Im Gegensatz zur freien Trisomie 21 wird hier die Krankheit über balancierte Träger weitervererbt.

Artikel lesen

Das „Rolling-Circle-Modell“ der Replikation bei Plasmiden und Phagen

Unter Rolling-Circle versteht man eine Form der DNA-Replikation bei ringförmigen DNA-Molekülen, wie beispielsweise Plasmiden oder bestimmter viraler DNA (wie z. B. bei einzelsträngigen DNA-Phagen). Die Rolling-Circle-Replikation ist neben dem Y-Modell ein weiteres Modell zur Erklärung der Replikation bei Bakteriophagen und einigen Plasmiden.

Seitennummerierung

  • Previous Page
  • Seite 13
  • Seite 14
  • Aktuelle Seite 15
  • Seite 16
  • Seite 17
  • Seite 18
  • Next Page

993 Suchergebnisse

Fächer
  • Biologie (993)
Klassen
  • 5. Klasse (493)
  • 6. Klasse (493)
  • 7. Klasse (493)
  • 8. Klasse (493)
  • 9. Klasse (493)
  • 10. Klasse (493)
  • Oberstufe/Abitur (500)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025