Direkt zum Inhalt

8 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Wurzeln, Wissenswertes und Historisches

Eine Umkehrung des Potenzierens ist das Radizieren (Wurzelziehen).
Es ist die Frage nach dem Wert von a zu beantworten, wenn in der Potenz a b = c die Werte von b und c bekannt sind.
a n = c     ( a ∈ ℝ ;   a ≥ 0   ;   n ∈ ℕ ;   n ≠ 1;   n ≠ 0;   c ≥ 0 ) ist gleichbedeutend mit
a = c n (gesprochen: a ist gleich n-te Wurzel aus c).
Dabei heißen n der Wurzelexponent, c der Radikand und a der Wurzelwert.

Artikel lesen

Nichteuklidische Geometrie

Geometrie ist ein Gebiet der Mathematik, das bei Punktmengen (z. B. auf und zwischen Linien und Flächen) Gesetzmäßigkeiten der Lage, Größe und Gestalt einschließlich ihrer Veränderung sowie Abbildung betrachtet. Je nachdem, ob metrische Beziehungen (Länge, Winkelgrößen, Flächen, Rauminhalte) untersucht werden oder ob nur die gegenseitige Lage der Objekte betrachtet wird, spricht man von metrischer oder projektiver Geometrie.
Metrische Geometrien sind die euklidische Geometrie, die auf dem Parallelenaxiom aufgebaut ist, und die nichteuklidischen Geometrien, wie die bolyai-lobatschewskische (hyperbolische) Geometrie, die zwar alle Axiome der euklidischen Geometrie beibehält, aber das Parallelenaxiom nicht verwendet, und die riemannsche (elliptische) Geometrie, die zusätzlich von der Annahme ausgeht, dass nicht jede Gerade unendlich lang ist.

Artikel lesen

Arithmetische Folgen

Eine arithmetische Zahlenfolge ist dadurch charakterisiert, dass aufeinanderfolgende Glieder alle den gleichen Abstand d haben. Jedes Folgeglied (außer dem ersten) ist das arithmetische Mittel seiner benachbarten Glieder.

Artikel lesen

Carl Friedrich Gauß

CARL FRIEDRICH GAUSS (1777 bis 1855), deutscher Mathematiker und Physiker
* 30.04.1777 Braunschweig
† 23.02.1855 Göttingen

CARL FRIEDRICH GAUSS war lange Jahre Professor für Astronomie und Direktor der Sternwarte in Göttingen. Mathematisch arbeitete er vor allem auf den Gebieten der Zahlentheorie und der Geometrie. Großes Interesse hatte er auch an Geodäsie.

Artikel lesen

Euklid

EUKLID VON ALEXANDRIA (etwa 365 bis etwa 300 v. Chr.), griechisch-hellenistischer Mathematiker

EUKLID fasste in den „Elementen“ wesentliche Teile des mathematischen Wissens seiner Zeit zusammen und gründete sie auf Axiome bzw. Postulate. Eine besondere Rolle spielte in der Geschichte der Mathematik EUKLIDs fünftes Postulat, das sogenannte Parallelenaxiom. Der Versuch, dieses Axiom zu beweisen, führte zu einer Gabelung in die euklidische Geometrie einerseits und nichteuklidische Geometrien andererseits.
Mit dem Namen EUKLIDs verbunden sind weiterhin die Begriffe euklidischer Algorithmus, euklidischer Beweis sowie der Satz von EUKLID.
Bekannt sind ferner Arbeiten EUKLIDs zur geometrischen Optik.

Artikel lesen

Landvermessung, Anfänge

Die babylonischen und ägyptischen Überlegungen in der Geometrie dienten zur Lösung praktischer Probleme. Die ersten Menschen vor der Antike, die sich mit der Geometrie beschäftigten, waren wohl die Landmesser Ägyptens. Die Griechen gaben ihnen den Namen Harpedonapten (Schnurspanner).
Durch Spannen von geknoteten Schnüren konnten die ägyptischen Landmesser auf dem Erdboden Geraden, Kreise und Winkel abstecken.

Artikel lesen

Gaußscher Algorithmus

Ein Verfahren zur Lösung linearer Gleichungssysteme mit drei und mehr Unbekannten ist der gaußsche Algorithmus (das gaußsche Elimierungsverfahren).

Artikel lesen

Mathematik

Die Mathematik ist vor allem gekennzeichnet durch ihren weitestgehend deduktiven (axiomatischen) Aufbau, durch die Genauigkeit ihrer Begriffe sowie die Strenge ihrer Beweise. Sie steht in enger Wechselbeziehung mit anderen Wissenschaften, insbesondere den Naturwissenschaften.
Im Folgenden werden Informationen zu Teilgebieten und zur Geschichte der Mathematik gegeben.

8 Suchergebnisse

Fächer
  • Mathematik (8)
Klassen
  • 5. Klasse (8)
  • 6. Klasse (8)
  • 7. Klasse (8)
  • 8. Klasse (8)
  • 9. Klasse (8)
  • 10. Klasse (8)
  • Oberstufe/Abitur (10)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025