Direkt zum Inhalt

2 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Kettenregel der Differenzialrechnung

Im Folgenden soll die Kettenregel der Differenzialrechnung bewiesen werden.
Die Kettenregel besagt: Die Ableitung einer verketteten Funktion ist gleich dem Produkt der Ableitungen von äußerer und innerer Funktion an der jeweiligen Stelle.
Für die Anwendung der Kettenregel ist eine auf der leibnizschen Schreibweise d y d x anstelle von f ' ( x ) beruhende Notation sehr einprägsam.

Artikel lesen

Verketten von Funktionen

Ist für x ∈ D g eine Funktion z = g ( x ) mit dem Wertebereich W g gegeben und ferner für z ∈ W g eine Funktion y = f ( z ) , dann heißt y = f ( g ( x ) )         ( mit        x ∈ D g ) mittelbare (verkettete) Funktion von x .
Schreibweise: y = f ∘ g (gelesen: f „Kuller“ g oder f „Kringel“ g)
Anmerkungen: Es ist die Verkettungsvoraussetzung W g ⊆ D f zu beachten.
f ∘ g bedeutet: Erst g dann f anwenden (d.h. f nach g ).

Die Funktion f nennt man äußere Funktion, die Funktion g innere Funktion der verketteten Funktion y = f ( g ( x ) ) .

2 Suchergebnisse

Fächer
  • Mathematik (2)
Klassen
  • Oberstufe/Abitur (2)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025