Direkt zum Inhalt

8 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Unabhängigkeit von (mehr als zwei) Ereignissen

Zwei Ereignisse A und B mit positiver Wahrscheinlichkeit sind genau dann voneinander stochastisch unabhängig, wenn gilt:
  P ( A ∩ B ) = P ( A ) ⋅ P ( B )
Man kann diesen Ansatz auf endlich oder abzählbar viele Ereignisse ausdehnen, wobei der Einfachheit halber vorausgesetzt wird, dass alle betrachteten Ereignisse eine positive Wahrscheinlichkeit besitzen. Dabei ist aber Vorsicht geboten. Es ist zum Beispiel möglich, dass die Ereignisse A 1 ,       A 2 ,       ...,       A n paarweise voneinander unabhängig sind (d.h., je zwei der Ereignisse sind voneinander unabhängig), die Ereignisse A 1 ,       A 2 ,       ...,       A n in ihrer Gesamtheit sind dies aber nicht.

Artikel lesen

Unabhängigkeit von zwei Ereignissen

Im Folgenden soll der Begriff der (stochastischen) Unabhängigkeit von zwei Ereignissen A und B  mit positiven Wahrscheinlichkeiten betrachtet werden.
Die Unabhängigkeit von Ereignissen darf nicht mit der Unvereinbarkeit von Ereignissen verwechselt werden.

Artikel lesen

Laplace-Experimente

Ein Zufallsexperiment (Zufallsversuch) mit einer endlichen Ergebnismenge Ω = { e 1 ;   e 2 ;   ... ;   e n } heißt LAPLACE-Experiment, wenn es der LAPLACE-Annahme genügt, d.h. wenn alle seine atomaren Ereignisse gleichwahrscheinlich sind, d.h. wenn diese jeweils mit derselben Wahrscheinlichkeit P ( { e 1 } ) = P ( { e 2 } ) = ... = P ( { e n } ) eintreten.

Artikel lesen

Die Laplace-Regel

Schon lange vor der axiomatischen Begründung der Stochastik rechnete man mit Wahrscheinlichkeiten. Besonders zu den Zeiten, da die Mathematik hof- und gesellschaftsfähig war, wurden deren professionellen Vertretern immer wieder Fragen zu Glücks- und Kartenspielen gestellt. Dabei erwartete man nicht selten Aussagen über sogenannte zusammengesetzte Ereignisse, wie dies zum Beispiel der am Hof LUDWIG XIV. lebende Literat und Philosoph ANTOINE GOMBAUD CHEVALIER DE MÉRÉ (1610 bis 1685) gegenüber dem Mathematiker BLAISE PASCAL (1623 bis 1662) tat.

Dieser Fragestellung liegt ein sogenanntes LAPLACE-Experiment, ein Zufallsexperiment mit endlich vielen Ergebnissen (Ausfällen), von denen jedes mit der gleichen Wahrscheinlichkeit eintritt, zugrunde. Sie kann mithilfe der LAPLACE-Regel gelöst werden.

Artikel lesen

Mehrfeldertafeln

Interessieren bei der n-maligen Durchführung eines Zufallsexperiments nicht nur zwei Ereignisse und ihre jeweiligen Gegenereignisse, sondern mehrere, so versucht man, die registrierten absoluten und relativen Häufigkeiten bzw. die Wahrscheinlichkeiten der dann möglichen Ereignisse (in Verallgemeinerung der Vierfeldertafel) in Form einer Mehrfeldertafel zu protokollieren.
Als Beispiele werden Achtfeldertafeln mit zwei und drei Zerlegungen betrachtet.

Artikel lesen

Baumdiagramme und Pfadregeln

Mithilfe eines Baumdiagramms lässt sich der mögliche Ablauf eines mehrstufigen Zufallsexperiments mit endlich vielen möglichen Ergebnissen in seiner komplexen Struktur erfassen, darstellen und analysieren. Zudem ist es damit möglich, auf Grundlage der ersten und zweiten Pfadregel die Wahrscheinlichkeiten für atomare und zusammengesetzte Ereignisse eines solchen Experiments in einfacher Weise zu berechnen.

Artikel lesen

Totale Wahrscheinlichkeit

Mitunter wird man mit dem Problem konfrontiert, die Wahrscheinlichkeit für ein Ereignis A zu berechnen, das im Zusammenhang mit n verschiedenen Ereignissen B i auftritt (in der Praxis können die B i zum Beispiel verschiedene Fälle oder Ursachen von A sein), wobei sich die Wahrscheinlichkeiten für die Ereignisse B i und insbesondere für das Eintreten von A unter der Bedingung, dass jeweils ein B i eingetreten ist, mitunter leichter angeben bzw. ermitteln lassen.

Gesucht ist also eine Aussage über eine „unbedingte“ Wahrscheinlichkeit, wenn Informationen über bedingte Wahrscheinlichkeiten vorliegen bzw. primär bestimmbar sind. Bei einer solchen Problemsituation wird man versuchen, den im Folgenden angeführten Satz der totalen Wahrscheinlichkeit anzuwenden.

Artikel lesen

Zählprinzipien

Bei der Lösung kombinatorischer Probleme sind zwei Zählprinzipien hilfreich – das für k-Tupel und das für Mengen.

8 Suchergebnisse

Fächer
  • Mathematik (8)
Klassen
  • Oberstufe/Abitur (8)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025