Direkt zum Inhalt

9 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Das Geburtstagsproblem

Sarah ist stolz darauf, dass sie am gleichen Tag wie ihr Lieblingsonkel Lutz Geburtstag hat. Das ist für sie Ausdruck einer besonderen Fügung des Schicksals. Etwas enttäuscht ist sie allerdings, als ihr Onkel meint, es sei nicht so außergewöhnlich, dass von den insgesamt 32 lebenden Mitgliedern ihrer Familie zwei am gleichen Tag Geburtstag haben.

Um die Aussage des Onkels zu überprüfen, muss man sich etwas näher mit dem sogenannten Geburtstagsproblem beschäftigen, das auf den österreichischen Mathematiker RICHARD VON MISES (1883 bis 1953) zurückgeht.

Artikel lesen

Gleichverteilungen

Der französische Mathematiker PIERRE SIMON DE LAPLACE (1749 bis 1827) untersuchte als einer der Ersten intensiv Zufallsexperimente, bei denen sinnvollerweise angenommen werden kann, dass jedes seiner Ergebnisse mit der gleichen Wahrscheinlichkeit eintritt.

Artikel lesen

Andrej Nikolajewitsch Kolmogorow

* 25. April 1903 Tambow (Russland)
† 20. Oktober 1987 Moskau

ANDREJ NIKOLAJEWITSCH KOLMOGOROW zählt zu den bedeutendsten Mathematikern des 20. Jahrhunderts. Er ist ein Vertreter jener sowjetischen Mathematik, die sich zwischen den beiden Weltkriegen als zweites mathematisches Zentrum neben den USA herausbildete und die eng an die hervorragenden Traditionen russischer Mathematiker anknüpfte.
Er leistete fundamentale Beiträge auf nahezu allen Teilgebieten der Mathematik.
Besonders intensiv arbeitete KOLMOGOROW auf dem Gebiet der Wahrscheinlichkeitsrechnung und der mathematischen Statistik, speziell die axiomatische Grundlegung des Wahrscheinlichkeitsbegriffs geht auf ihn zurück.

Artikel lesen

Pierre Simon de Laplace

* 28. März 1749 Beaumont-en-Auge
† 5. März 1827 Paris

PIERRE SIMON DE LAPLACE lieferte bedeutende Beiträge auf den Gebieten der Wahrscheinlichkeitsrechnung, der höheren Analysis sowie der Himmelsmechanik.
So fasste er beispielsweise in seinem 1812 erschienenen Werk „Théorie analytique des probabilités“ das damalige Wissen zur Wahrscheinlichkeitsrechnung zusammen.

Artikel lesen

Das griechische Drama

Zentraler Begriff des griechischen Theaters ist Mimesis. Das bedeutet „Nachahmung der Wirklichkeit“. Nach ARISTOTELES sind alle literarischen Formen Nachahmungen, so nachzulesen in seiner etwa 335 v. Chr. entstandenen Schrift „Poetik“. Die „Poetik“ ist der älteste poetologische Text der Antike, er hatte bestimmenden Einfluss bei der Herausbildung der neuzeitlichen Dichtungstheorie.
Mit der Einteilung nachzuahmender Charaktere begründete ARISTOTELES poetologisch den Unterschied zwischen Tragödie und Komödie. Das wichtigste strukturelle Merkmal der Tragödiendichtung sah er in der Geschlossenheit (geschlossene Handlung, Einheit der Zeit, Einheit des Ortes).
HORAZ stützte sich in seiner „Ars poetica“ im Wesentlichen auf ARISTOTELES. In der Literaturwissenschaft wird immer wieder betont, dass die lange Zeit unbekannte Poetik des ARISTOTELES (erste dt. Übersetzung 1753) indirekt durch HORAZ gewirkt habe. Dieser hatte die Theorie ARISTOTELES' untermauert, indem er davon ausging, dass der Dichter ein „kundiger Nachahmer“ der drei Einheiten sein solle.

Artikel lesen

Quantitative Beschreibung der Komplementarität

Die Komplementarität, also den Sachverhalt, dass sich die Beobachtung eines Interferenzmusters und eine Information über den Spalt, durch den ein Quantenobjekt hindurchgeht, ausschließen, kann man auch quantitativ beschreiben. Das kann mithilfe der Wahrscheinlichkeit P(x) geschehen. Diese Wahrscheinlichkeit kann man mit dem Zeigermodell ermitteln, wobei das Quadrat des Summenzeigers im Unterschied zur Optik – dort ist das ein Maß für die Intensität – als Maß für die Wahrscheinlichkeit P(x) zu interpretieren ist.

Artikel lesen

Räumliche Verteilung von Teilchen

Gegenstand der kinetischen Gastheorie ist die Betrachtung thermodynamischer Prozesse auf der Grundlage von Teilchengrößen, wie der Teilchenanzahl, ihrer Geschwindigkeit und ihrer Energie. Von Interesse ist auch die räumliche Verteilung von Teilchen eines Gases in verschiedenen Raumbereichen eines abgeschlossenen Systems. Bei einer hinreichend großen Anzahl von Teilchen ist für ein abgeschlossenes System die Gleichverteilung die wahrscheinlichste räumliche Anordnung. Es können aber auch statistische Schwankungen auftreten, die sich z.B. in Dichteunterschieden bemerkbar machen.

Artikel lesen

Die verallgemeinert-hypergeometrische Verteilung

Der hypergeometrischen Verteilung H N ;   M ;   n liegt ein Urnenmodell mit Kugeln von (genau) zwei verschiedenen Farben zugrunde. Verallgemeinert man diese Konstellation auf (genau) r mit r ∈ ℕ \ { 0 ;   1 } verschiedene Farben, so hat man es mit verallgemeinert-hypergeometrischen Zufallsgrößen zu tun.

Artikel lesen

Wahrscheinlichkeiten, Berechnen

Hier kannst du dich selbst testen. So kannst du dich gezielt auf Prüfungen und Klausuren vorbereiten oder deine Lernerfolge kontrollieren.

Multiple-Choice-Test zum Thema "Mathematik - Berechnen von Wahrscheinlichkeiten für k Erfolge bei einer Bernoulli-Kette".

Viel Spaß beim Beantworten der Fragen!

WISSENSTEST

9 Suchergebnisse

Fächer
  • Deutsch (1)
  • Mathematik (6)
  • Physik (2)
Klassen
  • 5. Klasse (14)
  • 6. Klasse (14)
  • 7. Klasse (14)
  • 8. Klasse (14)
  • 9. Klasse (14)
  • 10. Klasse (14)
  • Oberstufe/Abitur (9)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025