Direkt zum Inhalt

3 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Kenngrößen der Binomialverteilung

Kenngrößen von Zufallsgrößen dienen deren quantitativer Charakterisierung. Wir betrachten im Folgenden binomialverteilte Zufallsgrößen.

Artikel lesen

Erwartungswert von Zufallsgrößen

Da Zufallsgrößen oftmals sehr komplizierte mathematische Gebilde sind, sucht man nach zahlenmäßigen Kenngrößen, die über die Zufallsgröße Wesentliches aussagen und zugleich aus Beobachtungsdaten zumindest näherungsweise einfach zu bestimmen sind.
Eine derartige Kenngröße ist der Erwartungswert.

  • Es sei X eine endliche Zufallsgröße, die genau die Werte x i       ( m i t       i ∈ { 1 ;   2 ;   ... ;   n } ) annehmen kann, und zwar jeweils mit der Wahrscheinlichkeit P ( X = x i ) . Dann nennt man die folgende Kenngröße den Erwartungswert der Zufallsgröße X:
    E X = x 1 ⋅ P ( X = x 1 ) + x 2 ⋅ P ( X = x 2 ) + ... + x n ⋅ P ( X = x n )

Anmerkung: Für EX schreibt man auch E ( X ) ,       μ ( X ) ,       μ X       o d e r       μ .

Artikel lesen

Gleichverteilungen

Der französische Mathematiker PIERRE SIMON DE LAPLACE (1749 bis 1827) untersuchte als einer der Ersten intensiv Zufallsexperimente, bei denen sinnvollerweise angenommen werden kann, dass jedes seiner Ergebnisse mit der gleichen Wahrscheinlichkeit eintritt.

3 Suchergebnisse

Fächer
  • Mathematik (3)
Klassen
  • 5. Klasse (1)
  • 6. Klasse (1)
  • 7. Klasse (1)
  • 8. Klasse (1)
  • 9. Klasse (1)
  • 10. Klasse (1)
  • Oberstufe/Abitur (3)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025