Direkt zum Inhalt

4 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Stirlingscher Kreisprozess

Der stirlingsche Kreisprozess, bestehend aus je zwei isothermen und isochoren Zustandsänderungen, repräsentiert die „Takte“ eines ideal arbeitenden Heißluftmotors. Dabei wird das Antriebsmittel „Luft“ als ideales Gas betrachtet und die Prozessführung als reversible angenommen.

  1. Durch Aufnahme einer bestimmten Wärme aus einem heißen Wärmespeicher erfolgt eine isotherme Expansion. Es wird die Arbeit verrichtet.
  2. Durch eine isochore Abkühlung wird die Temperatur verringert. Dabei wird Wärme abgegeben.
  3. Takt: Für die isobare Kompression muss Arbeit zugeführt werden. Die dabei entstehende Wärme Δ wird an einen kalten Wärmespeicher abgegeben.
  4. Takt: Durch eine isochore Erwärmung wird nun die Temperatur erhöht und damit der Ausgangszustand wieder erreicht. Dazu wird die Wärme zugeführt.

Die Differenz aus verrichteter und zugeführten Arbeit kann von der Maschine nach aßen abgegeben werden.

Artikel lesen

Heißluftmotor

Das von dem schottischen Pfarrer ROBERT STIRLING 1816 angemeldete Patent eines Heißluftmotors ist bis heute ein Gegenstand technischer Forschungen geblieben. Der Grund dafür ist das geniale Funktionsprinzip dieses Motors. Wie bei einer Dampfmaschine erfolgt die Erzeugung der thermischen Energie durch äußere Verbrennung. Der Heißluftmotor, auch STIRLING-Motor genannt, lässt sich daher mit allen Brennstoffen betreiben und ist insbesondere auch für die Verwendung von erneuerbaren Energien wie Holz, Biogase und Solarwärme geeignet.

Artikel lesen

Isotherme Zustandsänderungen

Nach dem 1. Hauptsatz der Thermodynamik kann eine isotherme Zustandsänderung, also eine Zustandsänderung bei konstanter Temperatur, durch folgende Prozesse realisiert werden:

  • Dem Gas wird eine Wärme Q zugeführt, es dehnt sich aus und verrichtet Volumenarbeit (isotherme Expansion).
  • An dem Gas wird die äußere Arbeit W verrichtet, das Volumen wird kleiner und die dabei entstehende Wärme wird abgegeben (isotherme Kompression).

Die bei einer isothermen Expansion vom Gas verrichtete Arbeit (Volumenarbeit) entspricht der Fläche unterhalb der Isobare im p-V- Diagramm. Sie kann durch Auszählen der Fläche oder durch Integration berechnet werden. Bei Verwendung des Modells ideales Gas beträgt die Volumenarbeit bei isothermer Expansion:

W = − N ⋅ k ⋅ T ⋅ ln V 2 V 1

Diese Arbeit ist gleich der dem Gas zugeführten Wärme, die dieses benötigt, um seine innere Energie bei der Expansion konstant zu halten.

Artikel lesen

Carnotscher Kreisprozess

Der Carnotsche Kreisprozess, bestehend aus je zwei isothermen und adiabatischen Zustandsänderungen, repräsentiert die „Takte“ einer ideal arbeitenden Wärmekraftmaschine. Dabei wird das Arbeitsmittel als ideales Gas betrachtet und die Prozessführung als reversible angenommen.

1. Takt: Durch Aufnahme von Wärme erfolgt eine isotherme Expansion. Es wird die Arbeit verrichtet.
2. Takt: Bei einer adiabatischen Expansion verringert sich die Temperatur. Hierbei wird von dem Gas arbeitet verrichtet, seine innere Energie verringert sich.
3. Takt: Für die isotherme Kompression muss Arbeit zugeführt werden. Die dabei entstehende Wärme wird an die Umgebung abgegeben.
4. Takt: Durch eine adiabatische Kompression wird die Temperatur erhöht und damit der Ausgangszustand wieder erreicht.

Nach dem 1. Hauptsatz der Thermodynamik ist die abgegebene mechanische Arbeit gleich der Änderung der Wärme in dem System. Die von den Zustandskurven eingeschlossene Fläche ist ein Maß für die abgegebene Arbeit.

4 Suchergebnisse

Fächer
  • Physik (4)
Klassen
  • Oberstufe/Abitur (4)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025