Direkt zum Inhalt

3 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Lineare Gleichungssysteme (Matrixschreibweise)

Ein lineares Gleichungssystem besteht aus mehreren Gleichungen (im Sonderfall nur aus einer Gleichung), deren Lösungen alle Gleichungen des Systems erfüllen müssen.
Die Lösung eines linearen Gleichungssystems ist der Durchschnitt der Lösungsmengen der einzelnen Gleichungen.

Artikel lesen

Lösbarkeitskriterien für homogene lineare Gleichungssysteme

Ein homogenes lineares Gleichungssystem ist stets lösbar. Es besitzt immer den Nullvektor als Lösung (trivialen Lösung). Dieser ist genau dann die einzige Lösung, wenn der Rang der Koeffizientenmatrix gleich der Anzahl der Variablen ist.
Ist der Rang der Koeffizientenmatrix kleiner als die Anzahl der Variablen, so besitzt das Gleichungssystem unendlich viele Lösungen.

Artikel lesen

Lösbarkeitskriterien für inhomogene lineare Gleichungssysteme

Ein inhomogenes lineares Gleichungssystem besitzt nur dann Lösungen, wenn der Rang der Koeffizientenmatrix gleich dem Rang der erweiterten Koeffizientenmatrix ist. Ist dieser gleich der Anzahl der Variablen, so existiert genau eine Lösung; ist er kleiner als die Anzahl der Variablen, dann existieren unendlich viele Lösungen.
Ist der Rang der Koeffizientenmatrix kleiner als der Rang der erweiterten Koeffizientenmatrix, dann besitzt das Gleichungssystem keine Lösung.

3 Suchergebnisse

Fächer
  • Mathematik (3)
Klassen
  • Oberstufe/Abitur (3)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025