Direkt zum Inhalt

2 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Numerische Lösungsverfahren für Differentialgleichungen

Viele Differenzialgleichungen – auch solche 1. Ordnung – lassen sich nicht oder nur aufwendig lösen. Deshalb ist es wichtig, neben exakten auch über numerische Lösungsverfahren zu verfügen, die Näherungslösungen für Anfangswertprobleme liefern. Da sich numerische Lösungsverfahren mithilfe von Computern abarbeiten lassen, werden Differenzialgleichungen für einen immer breiteren Interessentenkreis zugänglich.

Artikel lesen

Das Runge-Kutta-Verfahren

Soll eine explizite Differenzialgleichung f ′ ( x ) = G ( x ;   f ( x ) ) mit der Anfangsbedingung f ( x 0 ) = y 0 numerisch nach dem Polygonzugverfahren gelöst werden, so benutzt man die Differenzengleichung f ¯ ( x + h ) = f ¯ ( x ) + h ⋅ G ( x ;   f ¯ ( x ) ) .

Dabei ist y ¯ = f ¯ ( x ) eine Näherung für die eigentlich gesuchte Funktion y = f ( x ) .

Bei Übergang zur Darstellung der Differenzengleichung als iterative Bildungsvorschrift ergibt sich y ¯ i   + 1 = y ¯ i + h ⋅ G ( x i ;   y ¯ i ) bzw. y ¯ i   + 1 = y ¯ i + h ⋅ m i ( p o l y )  mit m i ( p o l y ) = G ( x i ;   y ¯ i ) .

2 Suchergebnisse

Fächer
  • Mathematik (2)
Klassen
  • Oberstufe/Abitur (2)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025