Direkt zum Inhalt

2 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Unbeschränktes und logistisches Wachstum (Differenzialgleichungen)

Eine Population bestehe aus N Individuen. Nach einer Zeit Δ t ist eine Änderung Δ N mit Δ N = N ( t + Δ t ) − N ( t ) des Populationsumfangs N zu verzeichnen. Kann die Population ohne Beschränkung wachsen, so ist die Änderung proportional zum Ausgangsumfang – je mehr Individuen vorhanden sind, desto mehr Nachwuchs stellt sich ein. Es gilt also Δ N ∼ N  oder  Δ N = k N (unbeschränktes Wachstum), wobei k als Wachstumsrate (bei unbeschränktem Wachstum) bezeichnet wird.
Ist das Wachstum durch eine Obergrenze G der Individuenzahl beschränkt, so wird sich bei noch kleiner Individuenzahl ein annähernd unbeschränktes Wachstum einstellen, mit wachsender Zahl N wird die Wachstumsrate jedoch kleiner, um schließlich bei N = G den Wert 0 anzunehmen. Eine Beschränkung kommt beispielsweise zustande, wenn die Population in einem isolierten Gebiet lebt, in dem sich höchstens G Individuen ernähren können.

Die modifizierte Wachstumsrate
k b = k ( 1 − N G )
weist das erwartete Verhalten auf.

Als Differenzengleichung ergibt sich
Δ N = k b ⋅ N = k ⋅ ( 1 − N G ) ⋅ N
(logistisches Wachstum).

Artikel lesen

Pierre-François Verhulst

* 28. Oktober 1804 Brüssel
† 15. Februar 1849 Brüssel

PIERRE-FRANÇOIS VERHULST gilt als Vorläufer der modernen Bevölkerungsstatistik.
Insbesondere entdeckte er die dem Bevölkerungswachstum zugrunde liegende Gleichung des sogenannten logistischen Wachstums (logistische Gleichung).

2 Suchergebnisse

Fächer
  • Mathematik (2)
Klassen
  • Oberstufe/Abitur (2)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025