Direkt zum Inhalt

4 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Goniometrische Gleichungen mit einer Winkelfunktion

Goniometrische (trigonometrische) Gleichungen sind Gleichungen, in denen die Variable im Argument von Winkelfunktionen vorkommt. Ein allgemeines Verfahren zur direkten Bestimmung der Lösung oder der Lösungen einer goniometrischen Gleichung gibt es nicht, - oft sind die Lösungen nur durch Näherungsverfahren zu ermitteln.
Goniometrische Gleichungen mit nur einer Winkelfunktion und gleichem Argument lassen sich manchmal relativ einfach lösen (etwa indem sie durch Substitution auf algebraische Gleichungen zurückgeführt werden). Treten verschiedene Argumente auf, so kann durch Anwenden von Additionstheoremen und Winkelbeziehungen versucht werden, eine Gleichung mit Winkelfunktionen des gleichen Arguments zu erreichen.

Artikel lesen

Goniometrische Gleichungen mit mehreren Winkelfunktionen

Goniometrische (trigonometrische) Gleichungen sind Gleichungen, in denen die Variable im Argument von Winkelfunktionen vorkommt. Ein allgemeines Verfahren zum direkten Bestimmen der Lösung oder der Lösungen einer goniometrischen Gleichung gibt es nicht, - oft sind die Lösungen nur durch Näherungsverfahren zu ermitteln.
Tritt die Variable als Argument von verschiedenen Winkelfunktionen auf, so versucht man so umzuformen, dass die Gleichung auf eine solche mit nur einer Winkelfunktion reduziert wird. Bei diesen Umformungen helfen Beziehungen zwischen den Winkelfunktionen.

Artikel lesen

Gleichungen mit absoluten Beträgen

Gleichungen, bei denen von der Variablen (Unbekannten) direkt oder indirekt der absolute Betrag angegeben ist, sind weder der Gruppe der algebraischen Gleichungen noch der Gruppe der transzendenten Gleichungen zuzuordnen.
Beim Lösen von Gleichungen mit Beträgen sind Fallunterscheidungen vornehmen.
Dies wird für lineare und quadratische Gleichungen demonstriert.

Artikel lesen

Lösen von Exponentialgleichungen

Eine Gleichung nennt man Exponentialgleichung, wenn mindestens ein freie Variable (Unbekannte) als Exponent auftritt.
Exponentialgleichungen können durch Exponentenvergleich, durch Logarithmieren bzw. auf grafischem Wege gelöst werden.

4 Suchergebnisse

Fächer
  • Mathematik (4)
Klassen
  • 5. Klasse (5)
  • 6. Klasse (5)
  • 7. Klasse (5)
  • 8. Klasse (5)
  • 9. Klasse (5)
  • 10. Klasse (5)
  • Oberstufe/Abitur (4)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025