Direkt zum Inhalt

2 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Radialkraft

Die Radialkraft gibt an, mit welcher Kraft ein Körper auf einer Kreisbahn gehalten wird.

Formelzeichen: F → r
Einheit:ein Newton (1 N)

Die Radialkraft, auch Zentralkraft oder Zentripetalkraft genannt, kann mit folgenden Gleichungen berechnet werden:


F r = m ⋅ v 2 r       F r = m ⋅ 4 π 2 ⋅ r T 2       F r = m ⋅ 4 π 2 ⋅ r ⋅ n 2

Sie ist, wie jede andere Kraft, eine gerichtete (vektorielle) Größe und immer in Richtung Zentrum der Kreisbewegung gerichtet.

Artikel lesen

Kräfte bei der Kreisbewegung

Welche Kräfte bei einer Kreisbewegung wirken, hängt davon ab, welches Bezugssystem man zugrunde legt. Von einem Inertialsystem (unbeschleunigtes, ruhendes Bezugssystem) aus beschrieben gilt:

Damit sich ein Körper auf einer Kreisbahn bewegt, muss auf ihn eine Kraft in Richtung Zentrum der Kreisbewegung wirken. Diese Kraft wird als Radialkraft bezeichnet. Sie bewirkt die Radialbeschleunigung und hat den Betrag:

F r = m ⋅ v 2 r = m ⋅ ω 2 ⋅ r = m ⋅ 4 π 2 ⋅ r T 2 = m ⋅ 4 π 2 ⋅ r ⋅ n 2

Zu dieser Radialkraft existiert nach dem Wechselwirkungsgesetz eine gleich große, entgegengesetzt gerichtete Gegenkraft, die keine besondere Bezeichnung trägt.
Von einem mitrotierenden (beschleunigten) Bezugssystem aus stellt sich der Sachverhalt anders dar: Auf einen Körper wirkt eine radial nach außen gerichtete Trägheitskraft, die als Zentrifugalkraft bezeichnet wird.

2 Suchergebnisse

Fächer
  • Physik (2)
Klassen
  • 5. Klasse (1)
  • 6. Klasse (1)
  • 7. Klasse (1)
  • 8. Klasse (1)
  • 9. Klasse (1)
  • 10. Klasse (1)
  • Oberstufe/Abitur (1)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025