Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Biologie Abitur
  3. 3 Stoffwechsel und Energieumsatz
  4. 3.3 Abbauender Stoffwechsel
  5. 3.3.1 Die Zellatmung setzt Energie frei
  6. Hungern

Hungern

Beim Hungern laufen biochemische, physiologische sowie psychische Prozesse und Regelkreise ab. Ausgelöst werden sie durch das Sinken des Glucosespiegels im Blut. Bei den biochemischen Prozessen stellt der Körper auf die Bildung von Glucose aus Eiweiß und Fett (Gluconeogenese) um, wenn die Glykogenreserven in der Leber erschöpft sind. Auf diese Weise werden zuerst die Fettdepots aufgebraucht. Später beginnt die Eiweißverdauung von Muskeleiweiß. Da die osmotische Wirkung des Blutes nachlässt, entstehen Hungerödeme.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Beim Hungern greift der Körper auf Energiereserven zurück

Oft wird Hunger mit einem leeren Magen gleichgesetzt. Hunger ist jedoch viel mehr. Er läuft im Körper als außerordentlich komplexes System von biochemischen Prozessen, physiologischen Erscheinungen, psychischen Empfindungen und Regelkreisen ab.
Wird einige Zeit nichts gegessen, dann bombardiert das Appetitszentrum im Hypothalamus (Gehirnteil) ständig das Bewusstsein mit Impulsen, endlich Nahrung aufzunehmen. Dies resultiert aus der Wahrnehmung und Impulsleitung von Rezeptoren: Mechanorezeptoren stellen die Leerkontraktionen des Magens fest und innere Wärmerezeptoren den Rückgang der Wärmeproduktion. Im Blut sinkt der Glucosegehalt. Glucoserezeptoren melden den Glucoseabfall ebenfalls dem Gehirn.

Nun beginnen biochemische Prozesse, den Blutzuckerspiegel aufrecht zu erhalten, indem Glykogen, ein körpereigenes Kohlenhydrat, zu Glucose-6-phosphat und Glucose abgebaut wird.
Hat sich der abbaufähige Kohlenhydratanteil in der Leber erschöpft, stellt der Körper auf Gluconeogenese um. Der lebensnotwendige Glucosespiegel im Blut wird gehalten, indem Glucose zuerst aus Reservefetten und später auch aus Eiweißen gewonnen wird. Bei längerem Hungern werden Depotfette zu Glycerin und Fettsäuren abgebaut, dabei wird das Glycerin in die Glycolyse und die Fettsäuren über Acetyl-CoA in den Citratzyklus geschleust. Die Bestandteile der Fette werden über das Oxalat und Phosphoenolpyruvat in Glucose umgewandelt. Eine lebenserhaltende Maßnahme, weil damit der Blutzuckerspiegel aufrechterhalten werden kann. Dem Blut entnehmen alle Organe die Glucose zur Energiegewinnung. Sinkt der Gehalt, wird vor allem das Gehirn nicht mehr ausreichend versorgt, der Hungernde wird müde.

Auch über den Citratzyklus können Glycerin und Fettsäuren in die Atmungskette der Zelle gelangen und direkt der Energiegewinnung dienen. Beim andauernden Hungern können auch Proteine, vor allem das Muskeleiweiß, abgebaut werden.
Pyruvat, Acetyl-CoA oder Oxalat sind auch Zwischenprodukte des Eiweißabbaues. Sie können letztlich über das Phosphoenolpyruvat in Glucose für das Blut umgebaut werden. Die Abfallstoffe Ammoniak und Kohlenstoffdioxid gelangen in den Harnstoffzyklus und werden als Harnstoff ausgeschieden.

Durch die Gluconeogenese sichert sich der Organismus in Notzeiten die Herstellung von Glucose aus Eiweißen, Fetten oder Glykogen.
Während der Glykolyse und im Citronensäurezyklus werden die energiereichen Verbindungen ATP und GTP (Adenosin- und Guanosintriphosphat) gebildet, die für Energie verbrauchende Prozesse bereit gestellt werden. Aus Fetten und Proteinen entstehen NADH + H + (Nicotinamid-Adenin-Dinucleotid) und FADH 2 (Flavin-Adenin-Dinucleotid), zwei Moleküle, die Protonen gebunden haben.
Diese Protonen werden in die Atmungskette geschleust und unter Verbrauch von Sauerstoff durch die innere Membran der Mitochondrien gepumpt. Beim Zurückströmen entsteht das ATP als Energiequelle für energieverbrauchende Prozesse.
Die Gluconeogenese verläuft weitgehend als Umkehr der einzelnen Reaktionsschritte der Glykolyse. Nur einige Schritte sind nicht direkt umkehrbar, sondern erfordern einige Zwischenschritte als Umwegreaktionen (z. B. erfolgt die Bildung von Phosphoenolpyruvat anstatt durch direkte Phosphorylierung über Oxalacetat).

  • Glucoseneusynthese

Der Abbau von Muskeleiweiß ist eine Art Selbstverdauung, weil der Hungernde auf diese Weise seinen Energiebedarf decken muss, wenn auch die Fettreserven aufgebraucht sind. Nur so kann der Mensch „bis auf die Knochen“ abmagern. Normalerweise haben die wenigen Aminosäuren und Eiweiße im Blut eines ausreichend Ernährten eine genügend große osmotische Wirkung, um Wasser zu binden. Bei extremem Hungern sinkt der Anteil und die notwendige Konzentration an Aminosäuren und Proteinen kann im Blut nicht mehr aufrechterhalten werden. Die Folge sind Hungerödeme. Besonders in der Nähe von Gelenken sammelt sich Wasser in den Geweben. Hungernde Kinder in Afrika sieht man oft mit einem sogenannten Wasserbauch, ein lebensbedrohlicher Zustand.
Wird wieder Nahrung in ausreichender Menge zugeführt, kann der Muskelapparat neu aufgebaut werden. Durch langes Hungern geschädigtes Herzmuskelgewebe (z. B. durch Kriegsgefangenschaft) ist oft nicht mehr reparabel.

Lernhelfer (Duden Learnattack GmbH): "Hungern." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/schuelerlexikon/biologie-abitur/artikel/hungern (Abgerufen: 23. May 2025, 13:36 UTC)

Suche nach passenden Schlagwörtern

  • Gluconeogenese
  • Hungern
  • Blutzuckerspiegel
  • Hungerödeme
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Glykolyse

Glykolyse wurde von den griechischen Wörtern glycos = süß und lysis = Auflösung abgeleitet. Damit ist die Zuckerspaltung gemeint. Sie findet im Cytoplasma der Zellen statt. Bei der aeroben Glykolyse (Sauerstoffanwesenheit) wird ein Glucosemolekül mit 6 C-Atomen unter Energiegewinn in Form von ATP in zwei Pyruvat-Ionen mit 3 C-Atomen gespalten. Pyruvate sind die Anionen der Brenztraubensäure, welche im Citronensäurezyklus weiter verwertet werden. Unter anaeroben Bedingungen (Sauerstoffabwesenheit) ist das Endprodukt der Glykolyse Lactat (Milchsäure) oder Ethanol. Dieser Weg der anaeroben Verwertung von Glucose ist der älteste biochemische Mechanismus zur Energiegewinnung, welcher auch die Entwicklung von lebenden Organismen in sauerstofffreier Atmosphäre ermöglichte.

Harnstoffzyklus

Eiweiße und Nucleinsäuren enthalten Stickstoff in Form von Aminogruppen ( NH 2 − ). Beim Abbau dieser Moleküle im Stoffwechsel entsteht giftiges Ammoniak NH 3 , das gelöst in Form von Ammoniumionen NH 4 + vorliegt. Durch die Bildung von Harnstoff unter Bindung von NH 4 + in den Leberzellen in zyklischen Reaktionen erfolgt ein Unschädlichmachen des Ammoniaks (Entgiftung) und ein Abführen aus dem Körper. Einer der dabei entstehenden Stoffe, Fumarat, stellt die Verbindung zum Citratzyklus her. Über Fumarat kann der Harnstoffzyklus auch zur Gluconeogenese sowie zur Bildung von Citrat und Oxalat dienen.

Zellatmung

Zellen nehmen zu ihrer Energieversorgung Glucose (Traubenzucker) auf, welche im Cytoplasma und in den Mitochondrien von Eukaryoten vollständig zu Kohlenstoffdioxid und Wasser abgebaut wird. Am Ende des Abbauweges gewinnt die Zelle mit Hilfe der frei werdenden Energie die energiereiche Verbindung ATP, die für viele Stoffwechselvorgänge als universelle Energiequelle für den Organismus erforderlich ist. Zur Zellatmung zählen die Prozesse der Glykolyse, des Citratzyklus und der Atmungskette.

Citratzyklus

Der Citratzyklus ist eine 1937 von H.A. KREBS, G. MARTIUS und F. KNOPP etwa gleichzeitig entdeckte zyklische biochemische Reaktionskette, welche in allen lebenden Zellen abläuft. Er verläuft unter Beteiligung von Zitronensäure (Citrat), die zum Zwecke der Gewinnung von Reduktionsäquivalenten in andere organische Säuren umgewandelt wird. Er oxidiert in acht Schritten Acetyl-Reste zu Wasser und Kohlenstoffdioxid. Die dabei gewonnenen Reaktionsprodukte werden an die Atmungskette weitergegeben. Durch anschließende oxidative Phosphorylierung gewinnt die Zelle aus diesem Vorgang 10 ATP pro Acetyl-Gruppe.

Außerdem erfüllt der Citratzyklus eine Schlüsselfunktion im intermediären Stoffwechsel der Zelle. Er verbindet den energieliefernden Endabbau des aus dem Protein-, Fett- und Kohlenhydratstoffwechsel stammenden Zwischenprodukts Acetyl-Coenzym A mit der Erzeugung zahlreicher Vorstufen für anabole Biosynthesewege.

Enzymregulation

Enzyme dürfen im Organismus nicht permanent wirksam sein, weil ansonsten alle biochemischen Reaktionen gleichzeitig mit relativ hoher Geschwindigkeit ablaufen würden. Zum einen hängt die Enzymaktivität von der Temperatur, dem pH-Wert und der Konzentration des Substrats ab.
Außerdem wird die Aktivität von Enzymen nach verschiedenen Mechanismen reguliert. Durch Inhibitoren können Enzyme reversibel oder irreversibel gehemmt werden. Die reversible Enzymhemmung kann nach einem kompetitiven oder einem nicht kompetitiven Mechanismus erfolgen. Ein Sonderfall der nicht kompetitiven Hemmung ist die allosterische Regulation.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025