Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Chemie Abitur
  3. 1 Die Chemie eine Naturwissenschaft
  4. 1.1 Die Chemie im Kanon der Naturwissenschaften
  5. 1.1.1 Überblick
  6. Chemische Reaktionen

Chemische Reaktionen

Chemische Reaktionen sind Vorgänge, bei denen aus den Ausgangsstoffen neue Stoffe, Reaktionsprodukte, mit neuen Eigenschaften entstehen. Es erfolgt eine Stoffumwandlung, die immer mit einer Energieumwandlungen verbunden ist.
Chemische Reaktionen können mit Wortgleichungen oder Formelgleichungen wiedergegeben werden.
Chemische Reaktionen können nach verschiedenen Gesichtspunkten unterteilt werden.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Physikalische Vorgänge

Führt man dem Wasser Wärme zu, so siedet es bei einer Temperatur von 100 °C. Es entsteht Wasserdampf.
Kühlt man den Wasserdampf unter die Siedetemperatur ab, so entsteht wieder flüssiges Wasser mit denselben Eigenschaften wie vorher.
Durch das Sieden und Kondensieren hat sich nur der Aggregatzustand des Stoffes Wasser geändert. Es entstand aber kein neuer Stoff. Ähnliches beobachtet man beim Gefrieren und Schmelzen von Stoffen.

Auch bei einfachen Mischungsvörgängen wie dem Auflösen von Zucker in Kaffee oder dem Mischen von Sand mit Wasser ändern die Stoffe nur ihre physikalischen Eigenschaften.

Solche Gemische können durch physikalische Prozesse wieder getrennt werden, z. B. kann man Sand und Wasser unverändert durch Filtration voneinander trennen.

Bei all diesen physikalische Vorgängen findet keine Stoffumwandlung statt, d. h, die Stoffe werden chemisch nicht verändert.

  • Verbrennung von Magnesium

Chemische Reaktionen als Stoffumwandlung

Im Gegensatz zu einer Mischung von Sand (Siliciumdioxid) mit Wasser, erfolgt bei der Mischung von verdünnter Schwefelsäure mit verdünntem Kalkwasser (Calciumhydroxid) eine Stoffumwandlung.
Bei der Wechselwirkung der Lösungen von Schwefelsäure mit Calciumhydroxid ist weißes, in Wasser schwer lösliches Calciumsulfat entstanden.

Auch bei der Zersetzung von Wasser im hofmannschen Wasserzersetzungsapparat (siehe Bild 2) entstehen neue Stoffe mit neuen Eigenschaften. Aus flüssigem Wasser werden zwei unterschiedliche Gase gebildet.
Das eine Gas ist farblos, geruchlos, brennbar und beeinflusst einen glimmenden Holzspan nicht. Dieses Gas ist Wasserstoff. Das andere ist auch farblos und geruchlos, aber nicht brennbar und lässt einen glimmenden Holzspan hell aufflammen. Dieses Gas ist Sauerstoff.

Chemische Reaktionen sind Vorgänge, bei denen durch Spaltung, Umordnung und Neuknüpfung chemischer Bindungen eine Stoffumwandlung stattfindet.

Zur Beschreibung der Stoffumwandlung formuliert der Chemiker Reaktionsgleichungen. Die einfachste Varianteist die Wortgleichung. Die Wortgleichung für die elektrolytische Zersetzung von Wasser lautet:

Wasser   →   Wasserstoff   +   Sauerstoff Ausgangs- Reaktionsprodukte stoff (Edukt)

Die Stoffe, die vor einer chemischen Reaktion existieren, heißen Ausgangsstoffe (Edukte). Sie stehen in jeder Reaktionsgleichung vor dem Pfeil. Der Pfeil gibt die Richtung der chemischen Reaktion an. Stoffe, die nach einer chemischen Reaktion vorliegen, bezeichnet man als Reaktionsprodukte. Sie stehen hinter dem Pfeil bzw. auf der rechten Seite der Gleichung.

Wesentlich mehr Informationen kann den ausführlichen Reaktionsgleichungen unter Nutzung von Symbolen und Formeln (Formelgleichung) entnommen werden. Diese Gleichungen treffen quantitative Aussagen, denn die Art und die Zahl der Teilchen (Atome, Ionen) ist auf der Seite der Ausgangsstoffe und der Endprodukte gleich. Beim Aufstellen der Formelgleichungen müssen die Gesetze der Erhaltung der Masse sowie der multiplen und konstanten Proportionen berücksichtigt werden.

Die Formelgleichung für die elektrolytische Zersetzung von Wasser lautet:

2 H 2 O →   2 H 2   +   O 2 2 mol 2 mol 1 mol Wasser Wasser- Sauer- stoff stoff

Ein Doppelpfeil als Reaktionspfeil zeigt an das die Reaktion umkehrbar ist und dass Ausgangsstoffe und Reaktionsprodukte in einem chemischen Gleichgewicht vorliegen. Die Mehrzahl chemischer Reaktionen sind Gleichgewichtsreaktionen.

  • Wasser wird im hofmannschen Apparat elektrolytisch zersetzt.

Chemische Reaktion als Energieumwandlung

Die Spaltung, Umordnung und Neuknüpfung chemischer Bindungen ist auch mit energetischen Erscheinungen verbunden. So wird bei der Reaktion zwischen Schwefelsäure und Calciumhydroxid Energie in Form von Wärme frei. Dagegen muss zur Waserzersetzung Energie in Form von elektrischer Energie zugeführt werden.

Chemische Reaktionen sind immer mit Energieumwandlungen verbunden.

Je nachdem, ob insgesamt bei einer Reaktion thermische Energie als Wärme zugeführt werden muss oder abgegeben wird, unterscheidet man exotherme und endotherme Reaktionen.

Wird bei einer chemischen Reaktion Wärmeenergie abgegeben, so spricht man von einer exothermen chemischen Reaktion (ex = nach außen, therm = Wärme).
Wenn bei einer chemischen Reaktion ständig Wärmeenergie zugeführt werden muss, so liegt eine endotherme chemische Reaktion (endo = nach innen) vor.

Dazu kommt, dass selbst bei einer exothermen Reaktion wie der Bildung von Wasser durch die Knallgasreaktion dem Gemisch der Ausgangsstoffe erst eine Energie zur Aktivierung zugeführt werden muss (siehe Bild 3). Diese Energie bezeichnete der schwedische Chemiker SVANTE ARRHENIUS als Aktivierungsenergie.

  • Die Energieumwandlung bei chemischen Reaktionen kann durch Energiediagramme veranschaulicht werden.

Arten chemischer Reaktionen
Chemische Reaktionen lassen sich nicht nur nach energetischen Gesichtspunkten klassifizieren. Nach dem Aggregatzustand der Reaktanten unterteilt man in Gasreaktionen, Reaktionen in Lösungen und Festkörperreaktionen.
Stellt man dagegen die Art der reagierenden Teilchen in den Vordergrund, dann unterscheidet man zwischen Molekül-, Ionen- oder Radikalreaktionen.

In der organischen Chemie betrachtet man dagegen primär die Änderung des Bindungszustands der Kohlenstoffatome und unterscheidet zwischen Substitution, Addition und Eliminierung. Eine Übersicht über die organischen Reaktionstypen ist in einem anderen Beitrag auf dieser CD gegeben.

Als sehr sinnvoll hat sich die nachfolgende Klassifizierung nach der Art der bei der Reaktion ausgetauschten Teilchen erwiesen. Dabei unterscheidet man zwischen:

  • Redoxreaktionen
  • Säure-Base-Reaktionen
  • Fällungsreaktionen
  • Komplexreaktionen

Diese Einteilung wird vor allem in der anorganischen und allgemeinen Chemie bevorzugt.

Redoxreaktionen
Redoxreaktionen sind Reaktionen mit Elektronenübergang. Dabei sind die Teilreaktionen Oxidation und Reduktion miteinander gekoppelt, d. h. sie laufen gleichzeitig ab.

Bei der Teilreaktion Oxidation erfolgt eine Elektronenabgabe. Bei der Teilreaktion Reduktion erfolgt eine Elektronenaufnahme.

Das Oxidationsmittel ist der Reaktionspartner, der Elektronen aufnimmt und das Reduktionsmittel der Reaktionspartner, der Elektronen abgibt. Die Vorgänge der Oxidation und der Reduktion sind über korrespondierende Redoxpaare miteinander verknüpft (Bild 4).

Beispiele für Redoxraktionen sind ist der Prozess der Wasserbildung aus den Elementen. Auch bei dem seit über 500 000 Jahren vom Menschen genutzten Feuer handelt es sich wie bei allen Verbrennungsprozessen um eine bedeutende Redoxreaktion.

Auch alle elektrochemischen Prozesse sind Redoxreaktionen. Weitere Beispiele für Redoxreaktionen sind:

Wichtige Redoxreaktionen: Fotosynthese: 6 CO 2 + 6 H 2 O → C 6 H 12 O 6 + 6 O 2 Ammoniaksynthese: N 2 + 3 H 2 → 2 NH 3 Sprengstoffe: NH 4 NO 3 → N 2 + O 2 + 4 H 2 O Kohleverbrenung: C + O 2 → CO 2

  • Redoxreaktionen sind immer gekoppelte Reduktions-Oxidations-Prozesse.

Säure-Base-Reaktionen

Säure-Base-Reaktionen sind nach JOHANNES NICOLAUS BRÖNSTED (1879-1947) Reaktionen, die unter Protonenübergang verlaufen. Dabei geben die Säuren Protonen an die als Reaktionspartner zur Verfügung stehenden Basen ab.

Ähnlich wie bei den Redoxreaktionen bilden sich Säure-Base-Gleichgewichte mit korrespondierenden Säure-Base-Paaren aus:

Bild

Im Beispiel sind die korrespondierenden Säure-Base-Paare N H 4 + / N H 3 und H 2 O / O H − miteinander verknüpft. Diese Reaktion von Ammoniak mit Wasser nennt man Protolyse.

Zu den Säure-Base-Reaktionen zählen u. a. die o. g. Umsetzung von Schwefelsäure mit Calciumhydroxid sowie die Protolysen aller Säuren und Basen mit Wasser.

Auch im Alltag begegnen uns Säure Base-Reaktionen auf Schritt und Tritt:

Ausgewählte Säure-Base-Reaktionen: Neutralisation: 2 NaOH + H 2 SO 4 → Na 2 SO 4 + 2 H 2 O Abbinden von Kalk: Ca(OH) 2 + CO 2 → CaCO 3 + H 2 O Bildung von Salmiak: NH 3 + HCl → N H 4 C l

  • Ammoniak reagiert mit Wasser.

Fällungsreaktionen

Bei einer Fällungsreaktion bildet sich bei der Umsetzung zweier Reaktionspartner in einer homogenen Lösung ein Niederschlag eines schwer löslichen Reaktionsproduktes. Dabei werden Ionen übertragen.

Da zwei Phasen, eine homogene flüssige (Lösung) und eine feste (Niederschlag) vorliegen, spricht man auch von einer heterogenen Reaktion. Fällungsreaktionen haben große Bedeutung in der qualitativen chemischen Analyse (Nachweisreaktionen, Bild 6), bei der quantitativen Bestimmung der Ionen (Gravimetrie) und bei der Frisch- und Abwasserbehandlung. Auch die Rauchgasentschwefelung in Kraftwerken ist eine Fällungsreaktion.

Beispiele für Fällungsreaktionen: Ag + + Cl - → AgCl ↓ Ba 2+ + SO 4 2- → BaSO 4 ↓ Ca 2+ + CO 3 2- → CaCO 3 ↓

  • Die Fällung von Bariumsulfat dient zum Nachweis der Barium- und der Sulfat-Ionen.

    Heinz Mahler-H.Mahler

Komplexreaktionen
Komplexreaktionen sind Reaktionen, an denen sogenannte Verbindungen höherer Ordnung beteiligt sind. Bei der Bildung solcher Komplexe reagieren Elektronenpaarakzeptoren (z. B. Metall-Kationen) mit Elektronenpaardonatoren (Anionen oder Molekülen). Durch Ausbildung sogenannter Donor-Akzeptor-Bindungen entstehen Komplexverbindungen.

Ag + + 2 NH 3 → [ Ag(NH 3 ) 2 ] + Elektronen- Elektronen- Komplex paarakzeptor paardonator

Komplexreaktionen spielen eine wichtige Rolle in der Biochemie, z. B. bei der Sauerstoffübertragung im Blut aber auch in der chemischen Analytik, z. B. beim Eiweiß-Nachweis durch die BIURET-Reaktion (Bild 7).

Der Ablauf von Komplexreaktionen ist ebenso wie die anderen Reaktionsarten in anderen Beiträgen auf dieser DVD ausführlicher beschrieben.

  • Die violette Färbung der Eiweißlösung bei der BIURET-Reaktion beruht auf der Bildung komplexer Verbindungen.
Lernhelfer (Duden Learnattack GmbH): "Chemische Reaktionen." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/schuelerlexikon/chemie-abitur/artikel/chemische-reaktionen (Abgerufen: 20. May 2025, 06:01 UTC)

Suche nach passenden Schlagwörtern

  • hofmannschen Apparat
  • Fälllungsreaktionen
  • Ausgangsstoffe
  • Hydronium-Ionen
  • Hydroxid-Ionen
  • Säure-Base-Reaktionen
  • SVANTE ARRHENIUS
  • JOHANNES NICOLAUS BRÖNSTED
  • chemische Reaktion
  • Elektronendonator
  • Säuren
  • Reaktionsprodukte
  • Redoxreaktion
  • Basen
  • Oxonium-Ionen
  • Elektronenakzeptor
  • Reduktionsmittel
  • Protonenakzeptoren
  • Protonenübertragung
  • Energieumwandlungen
  • Wasser
  • Oxidation
  • Protonendonatoren
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Umfrage

Umfragen gehören zu den wichtigsten Methoden der empirischen Sozialforschung. Insbesondere für die Ermittlung der öffentlichen Meinung und deren Einbeziehung in den politischen Willensbildungsprozess ist die Umfrageforschung von herausragender Bedeutung. Je nach Beschaffenheit einer Befragung und der Auswahl von Probanden lassen sich verschiedene Typen von Umfragen charakterisieren. Zu nennen wären hier beispielsweise das mündliche Interview und die schriftliche Fragebogen-Erhebung, das Leitfadeninterview und die standardisierte Befragung oder die Totalerhebung und die Stichproben-Untersuchung. Alle Befragungstypen haben spezielle Vor- und Nachteile und ihre Auswahl orientiert sich meist am Kontext des Forschungsinteresses. Im Rahmen demoskopischer Untersuchungen wird vor allem das standardisierte, mündliche (immer häufiger auch telefonische) Interview sehr häufig eingesetzt.

Kritisch bewertet wird die gehäufte und nicht immer professionelle Durchführung von Befragungen sowie die Gefahr der Ergebnis-Manipulation. Darüber hinaus spielen auch demokratietheoretische Positionen bei Kontroversen zur Umfrageforschung eine Rolle.

Methoden der Datengewinnung

Das Ziel empirischer Wissenschaft besteht in der Gewinnung gesicherter Erkenntnisse über die Wirklichkeit. Für die Beschreibung, Erklärung und Überprüfung von Hypothesen und Theorien, für einen Vergleich oder eine Prognose, eine Einzelfallanalyse oder eine Klassifizierung werden in der empirischen Sozialwissenschaft in einem systematischen Prozess Daten erhoben und ausgewertet. Die Daten werden unmittelbar bei so genannten Merkmalsträgern erhoben. Das können Individuen, Parteien, Verbände sein. Ein sehr bekanntes Beispiel stellt die Wahlforschung dar.
Die Vorgehensweise bei einem solchen Forschungsprozess besteht aus mehreren Schritten.
In der empirischen Sozialforschung gibt es eine Vielzahl verschiedener Methoden. Sie werden grundlegend in quantitative und qualitative Methoden klassifiziert.                                                                                                                                                                      Empirische Sozialforschung findet in Deutschland vor allem an den Universitäten aber auch in Markt- und Meinungsforschungsinstituten statt.

Methoden der empirischen Sozialforschung

Die Politikwissenschaft selbst hat keine eigene Methodenlehre entwickelt. Sie nutzt das gesamte Methodenrepertoire der Sozialwissenschaften. Gegenstand der empirischen Sozialforschung ist die Analyse und Erklärung sozialer Phänomene mit wissenschaftlichen Methoden, z. B. die Analyse der Bevölkerungsentwicklung in einem Land oder die Erfassung der Meinungen der Bürger über die von ihnen gewählten Politiker.
In Abhängigkeit von der jeweiligen Zielstellung der vorgesehenen sozialempirischen Untersuchung werden verschiedene Verfahren unterschieden.

Hermeneutik

Hermeneutik bezeichnet allgemein die „Kunst des Deutens“. Ihre Ursprünge reichen zurück bis in die griechische Mythologie. Aus ihnen bildeten sich in der frühen Neuzeit unterschiedliche (sprach-, religions- und rechtswissenschaftliche) hermeneutische Kunstlehren heraus.
Innerhalb der Sozialforschung trug JÜRGEN HABERMAS wesentlich zur Weiterentwicklung der philosophischen Hermeneutik GADAMERs bei. Im Zentrum seiner Überlegungen stehen vor allem erkenntnistheoretische Probleme, auf denen er seine „Theorie des kommunikativen Handelns“ aufbaut. Im Unterschied dazu setzte ULRICH OEVERMANN bei konkreten Erfahrungen aus der Forschungspraxis an und entwickelte eine „objektive Hermeneutik“, die in der empirischen Sozialforschung als qualitative Methode zur Interpretation von Texten immer häufiger eingesetzt wird.
Die hermeneutische Deutung erfolgt grundsätzlich mittels eines Dreischritts: dem Verstehen, dem Auslegen und dem Beurteilen.

Das Modell Lichtstrahl

Licht ist eine sehr komplizierte Erscheinung, die mit unterschiedlichen Modellen beschrieben werden kann. Da ein Modell jeweils nur einige Merkmale oder Eigenschaften eines Originals widerspiegelt, hat jedes der Modelle einen bestimmten Anwendungsbereich. Das Modell Lichtstrahl ist ein Modell zur Darstellung des Weges, den das Licht zurücklegt. Es wird vor allem dann genutzt, wenn man in einfacher Weise die geradlinige Ausbreitung des Lichtes, die Entstehung von Schatten oder den Verlauf des Lichtes bei der Reflexion und bei der Brechung darstellen will. Das Modell versagt bei solchen Erscheinungen wie der Beugung, der Interferenz oder der Polarisation.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025