Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Chemie Abitur
  3. 10 Anwendungen der Chemie
  4. 10.1 Werkstoffe
  5. 10.1.1 Aufbau und Bildung synthetischer organischer Polymere
  6. Polykondensation

Polykondensation

Verbindendes Merkmal der Polykondensation ist die Verknüpfung von Monomeren, die mindestens zwei reaktionsfähige funktionelle Gruppen tragen, zu einem Makromolekül. Dabei werden einfache, niedermolekulare Reaktionsnebenprodukte wie Wasser, Alkohole, Ammoniak oder Chlorwasserstoff abgespalten.
Wichtige Polykondensate sind Polyester wie Polyethylenterephthalat (PET), Polyamide wie Nylon und Perlon, und Phenoplaste, zu denen Bakelit gehört, der erste vollsynthetisch hergestellte Kunststoff überhaupt.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Bei einer Polykondensation dienen Moleküle als Monomere, die mindestens zwei reaktionsfähige funktionelle Gruppen aufweisen müssen. Diese werden in einer Kondensationsreaktion miteinander verknüpft, wobei ein niedermolekulares Nebenprodukt, meist Wasser, abgespalten wird. Werden bifunktionelle Monomere, d. h. Moleküle mit zwei funktionellen Gruppen eingesetzt, so entstehen lineare, unverzweigte Polymere (Thermoplaste). Bei der Verwendung von polyfunktionellen Monomeren mit mehr als zwei reaktiven Gruppen erhält man dagegen verzweigte oder gar dreidimensional vernetzte Polymere (Duroplaste).

Polyester

Ausgangsstoffe für die Synthese von Polyestern sind im einfachsten Fall eine beliebige Dicarbonsäure und ein Diol. Daraus entsteht zunächst ein Ester, der bifunktionell ist, weil er immer noch eine Hydroxy- und eine Carboxy-Gruppe besitzt. Durch vielfache Wiederholung der Veresterung an diesen beiden funktionellen Gruppen bildet sich ein linearer Polyester, wobei Wasser als Nebenprodukt anfällt.Bild

Der wichtigste Polyester ist Polyterephthalsäureethylester bzw. Polyethylenterephthalat (PET), der aus Terephthalsäure und Ethandiol hergestellt wird. Für die Synthese nutzt man in der Regel den Methylester der Terephthalsäure und setzt diesen mit Ethandiol um. Als Nebenprodukt dieser Umesterung fällt Methanol an (Bild 2). Unter einer Umesterung versteht man die Substitution des Alkoholatrestes im Estermolekül durch einen anderen.

Für die Herstellung von Polyestern kann man auch von den reaktiven Carbonsäurechloriden ausgehen und diese mit einem Diol umsetzen. In diesem Fall entsteht Chlorwasserstoff als Nebenprodukt (Bild 3). Letztlich kommt es bei der Polyestersynthese nur darauf an, Monomere mit zwei funktionellen Gruppen immer wieder miteinander zu einer Esterbindung zu verknüpfen.

Verwendet man ungesättigte Monomere, so bilden sich bei der Kondensation ungesättigte Polyester, die als Rohstoffe für Lack- und Gießharze oder in faserverstärkter Form als Werkstoffe dienen können. Entscheidend ist das Vorliegen von Doppelbindungen im Polymer, sodass als Folgereaktion eine Polymerisation ablaufen kann, bei der die Polyesterketten miteinander verknüpft werden.

  • Synthese von PET
  • Veresterung von Carbonsäurechloriden

Polycarbonate

Große Bedeutung haben auch lineare Polyester aus Kohlensäureestern, die Polycarbonate genannt werden und z. B. unter dem Handelsnamen Makrolon® bekannt sind. Als Monomere werden hierfür Diphenylcarbonat und aromatische Diole wie 2,2-Di-(4-hydroxyphenyl)propan (Bisphenol A) verwendet. Bei der Kondensation findet wie bei der PET-Synthese eine Umesterung statt, bei der Phenol abgespalten wird (Bild 4).Bild

  • Synthese von Makrolon®

Aus Makrolon® können praktisch unzerbrechliche transparente Platten hergestellt werden, die sich als Rohstoff für Dachkonstruktionen ebenso eignen wie für die Datenspeicherung auf einer CD (Bild 5).

Polyamide

Analog zu den Polyestern werden durch Umsetzung von Diaminen mit Dicarbonsäuren Polyamide gewonnen, wobei Wasser abgespalten wird. Genauso wie bei den Proteinen sind die Monomere hier über Amidbindungen (- CO - NH -) verbunden.Bild

Das älteste synthetische Polyamid, Nylon, wird aus 1,6-Diaminohexan und Hexandisäure (Adipinsäure) synthetisiert. Da das Produkt auf beiden Seiten der Stickstoffatome der Amidbindung je sechs C-Atome aufweist, spricht man von einem Polyamid 6,6. Im Labor werden aufgrund ihrer höheren Reaktivität oft auch die umsatzfreudigeren Carbonsäurechloride anstelle der reinen Säuren eingesetzt.
Da die Diamine und Dicarbonsäuren oft nicht mischbar sind, nutzt man die Grenzflächenkondensation, wobei die Polykondensation an der Kontaktfläche der beiden Monomere abläuft und direkt das Produkt ausgezogen wird.

Ein weiteres wichtiges Polyamid ist Perlon® (Polyamid 6), das als Konkurrenzprodukt zu Nylon entwickelt wurde und sich in seinen Eigenschaften kaum von diesem unterscheidet.
Perlon® wird aus einem einzigen Monomer, dem cyclischen ε   –   Caprolactam, gewonnen. Dieses stellt ein innermolekulares Amid der 6-Aminohexansäure dar und enthält somit beide funktionellen Gruppen, die zur Bildung einer Amidbindung benötigt werden. Die Zugabe von ein wenig Wasser reicht aus, um bei einem Teil des Caprolactams die Amidbindung zu spalten, sodass 6-Aminohexansäure gebildet wird. Reagieren zwei solcher Moleküle miteinander, wird unter Bildung einer Amidbindung Wasser abgespalten, das wiederum zur Hydrolyse weiterer Caprolactam-Moleküle führt. Nach und nach entsteht so das Polyamid Perlon® (Bild 6).
Da sich im Perlon® zwischen zwei Stickstoffatomen immer sechs gleichartige C-Atome befinden, trägt es auch den Namen Polyamid 6.

Zwischen den Sauerstoff- und Wasserstoffatomen in den Amidbindungen der einzelnen Makromoleküle bilden sich leicht Wasserstoffbrücken. Diese stellen relativ schwache Wechselwirkungen dar und sind deutlich schwächer als gewöhnliche kovalente Bindungen. Daher werden sie bereits durch mechanische Belastung aufgespalten.BildNach Dehnbelastungen bilden sich die Wasserstoffbrückenbindungen jedoch zurück, weshalb Nylon- und Perlonfäden bedingt elastisch sind. Die Länge der Kohlenstoffkette zwischen den Amidbindungen beeinflusst die Elastizität stark, so sind Polyamide mit kürzeren Kohlenstoffketten steifer als die mit längeren.

Weitere synthetische Polykondensate

Zu den Polykondensaten gehören außer den bereits genannten Kunststoffen auch die Phenoplaste, die aus Phenolen (Hydroxybenzenen) und Methanal (Formaldehyd) hergestellt werden, und die Aminoplaste, zu deren Herstellung Harnstoff oder Melamin mit Methanal umgesetzt werden.

Der Phenoplast Bakelit war der erste vollsynthetisch hergestellte Kunststoff. Aus diesem mit Fasern verstärkten Duroplast wurde auch die Karosserie des Pkw Trabant hergestellt.

  • Synthese von Perlon® (Reaktionsgleichung)

Natürliche Polykondensate

Auch in der Natur finden sich Polykondensate, nämlich Proteine und Kohlenhydrate.
Proteine (Eiweiße) und Peptide sind Polyamide, die im Organismus durch enzymatisch katalysierte Polykondensation aus natürlichen Aminosäuren (α-Aminocarbonsäuren) gebildet werden. Unter Wasserabspaltung werden die Amino- und die Carboxy-Gruppe zu einer Peptid-Gruppe verknüpft. Diese entspricht in Struktur und Eigenschaften der Carbonsäureamid-Gruppe (-CO-NH), Proteine und Peptide sind also spezielle Polyamide, deren Monomere α-Aminosäuren sind.

Die Art und Reihenfolge der Aminosäuren in einem Protein bestimmt die Struktur und damit die Eigenschaften des entsprechenden Eiweißes.

  • Bildung eines Peptids

Die Kohlenhydrate Stärke und Cellulose werden durch Verknüpfung vieler Glucosemoleküle unter Wasserabspaltung gebildet, sie sind also ebenfalls Polykondensate. Die Reaktion, die zur Verknüpfung der Monomere führt, ist eine Acetalbildung, die gebildeten Makromoleküle können daher auch als Polyacetale bezeichnet werden. Auch hier sind Enzyme als Biokatalysatoren wirksam.

  • Polysaccharide sind in vielen Lebensmitteln enthalten.

    Boris Mahler, Berlin

Lernhelfer (Duden Learnattack GmbH): "Polykondensation." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/schuelerlexikon/chemie-abitur/artikel/polykondensation (Abgerufen: 19. May 2025, 15:14 UTC)

Suche nach passenden Schlagwörtern

  • Makrolon®
  • Kunststoffe
  • Perlon®
  • Umesterung
  • Nylon
  • Bakelit
  • Polycarbonat
  • Polyethylenterephthalat
  • Phenoplaste
  • PET
  • Plaste
  • Kondensation
  • Kohlenhydrate
  • Polyester
  • Polykondensation
  • Proteine
  • Polyamide
  • Aminoplaste
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Polyaddition

Bei der Polyaddition reagieren Monomere, die zwei oder mehr funktionelle Gruppen aufweisen, miteinander zu Makromolekülen, wobei es bei der Bindungsknüpfung zur Umlagerung eines Wasserstoffatoms kommt. Im Gegensatz zur Polykondensation entstehen hierbei keine Reaktionsnebenprodukte.
Wichtige Polyaddukte, d.h. Polymere, die durch Polyaddition hergestellt wurden, sind Epoxidharze, Polyurethane und Polyharnstoffe.

Herstellung und Verwendung von Siliconen

Silicone sind siliciumorganische Kunststoffe, in denen die Siliciumatome noch organische Reste tragen. Sie ähneln in ihrer Struktur organisch modifiziertem Quarz, weisen eine ähnliche Beständigkeit auf und besitzen aber die Flexibilität von Kunststoffen. Durch Variation der Synthesebedingungen kann die Struktur und damit die Eigenschaften der Silicone gezielt beeinflusst werden, sodass das Anwendungsspektrum nahezu unbegrenzt ist.
Silicone werden auch als Polysiloxane bezeichnet. Dabei steht „sil“ für Silicium, „ox“ für Sauerstoff und „an“ für die gesättigte Struktur der Verbindung.

Polyethylen – ein vielseitiger Werkstoff

Polyethylen ist ein moderner Massenkunststoff, der durch Polymerisation von Ethen synthetisiert wird. Je nach Reaktionsbedingungen entstehen zwei Arten von Polyethylen, Hochdruckpolyethylen und Niederdruckpolyethylen, die beide breite Anwendung im Alltag finden. Schon 1933 wurde es erstmals hergestellt, aber erst seit den 50er-Jahren, als wirtschaftlichere Synthesemethoden entwickelt wurden, ist es unentbehrlich. Ein Meilenstein in der Polyethylensynthese war die Entdeckung der Niederdruckpolymerisation nach K. ZIEGLER und G. NATTA, bei der Polyethylen mittels eines Katalysators mit deutlich geringerem Energieaufwand hergestellt werden kann.

Hermann Staudinger

* 23.03.1881 in Worms
† 08.09.1965 in Freiburg (Breisgau)

HERMANN STAUDINGER war ein deutscher Chemiker.
Er erforschte organische Verbindungen, z. B. die Ketene, organische Kolloide, Cellulose, Stärke, Glykogen und Kautschuk. Der Begriff „Makromolekül“ stammt von ihm. STAUDINGER wies nach, dass sich kleinere Moleküle, sogenannte Monomere, zu größeren Molekülen, sogenannten Polymeren, verbinden können. Damit schuf er die Grundlagen der Kunststoffchemie.
1953 erhielt der Wissenschaftler den Nobelpreis für Chemie.

Polymerisation

Eine der wichtigsten Reaktionsarten, durch die Kunststoffe gebildet werden können, ist die Polymerisation. Darunter versteht man eine sich vielfach wiederholende gleichschrittige Reaktionsfolge – Kettenreaktion genannt, bei der sich einfache Ausgangsstoffe (Monomere) über reaktive Doppelbindungen miteinander verbinden. In der stark exothermen Reaktion werden keine Nebenprodukte abgespalten.
Wichtige Kunststoffe, die durch Polymerisation hergestellt werden, sind Polyethen (PE), Polypropen (PP), Polyvinylchlorid (PVC), Polystyrol (PS), Polytetrafluorethen (PTFE), Polyacrylnitril (PAN) und Polymethacrylsäuremethylester (PMMA).

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025