Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Chemie Abitur
  3. 10 Anwendungen der Chemie
  4. 10.6 Umweltbezogene Chemie
  5. 10.6.5 Belastungen des Bodens
  6. Zusammensetzung des Bodens

Zusammensetzung des Bodens

Der Boden ist ein komplexes Gemisch aus anorganischen Bestandteilen, abgestorbenem organischen Material (Humus), Bodenluft und Bodenwasser mit gelösten anorganischen und organischen Substanzen.
Die anorganischen Anteile sind hauptsächlich Silicate, große Bedeutung haben Tonmineralien als Speicher für Pflanzennährstoffe. Abgestorbenes organisches Material wird von Bodenorganismen in Huminstoffe umgewandelt, die dann weiter abgebaut werden. Sie sind die wichtigste natürliche Quelle für Stickstoffdünger, außerdem besitzen sie viele funktionelle Gruppen, die Kationen binden können.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Die Lithosphäre (griechisch lithos = Stein) ist die Gesteinshülle der oberen festen Erdkruste. Der Boden, die relativ lockere Schicht wird auch als Pedosphäre (griechisch pedon = Boden) bezeichnet.
Während die Atmosphäre und die Hydrosphäre eine verhältnismäßig einheitliche stoffliche Zusammensetzung aufweisen, ist das beim Boden völlig anders. Er ist keine einheitliche Materie, sondern ein kompliziert zusammengesetztes System aus mineralischen und organischen Bestandteilen mit Pflanzenwurzeln, Bodenorganismen und Hohlräumen, in denen sich Luft und Wasser befinden.
Die mineralischen Bestandteile werden einerseits durch die Verwitterung von Gesteinen gebildet, zum anderen entstehen sie beim Abbau abgestorbener Biomasse durch Bodenorganismen zu anorganischen Verbindungen. Dieser Vorgang wird als Mineralisation bezeichnet.
Die organischen Bodenbestandteile, der Humus, entstehen durch chemische Reaktionen oder durch Mikroorganismen aus abgestorbener Biomasse, die Humifizierung.

abgestorbene Biomasse
Umwandlunggeologischchemisch und biologischbiologisch
VorgangInkohlungHumifizierungMineralisierung
Entstehung vonfossilen BrennstoffenHuminstoffenMineralstoffen
(CO 2 , H 2 O , NO 3 – )

Zusammensetzung

Die Böden in Mitteleuropa bestehen zu etwa 50 % aus festen Bestandteilen und 50 % aus Poren. Diese sind jeweils etwa zur Hälfte mit Bodenwasser und Bodenluft gefüllt. Im Bodenwasser sind Nährstoffe und organische Substanzen gelöst.
Bei den festen Bestandteilen nehmen 40-47 % die mineralischen Anteile ein, 3-10 % sind organische Substanzen. Torfböden können mehr als 25 % organische Substanz enthalten (Bild 2).

Mineralische Bestandteile

Die mineralischen Bestandteile des Bodens sind hauptsächlich Silicate. Unter diesen sind die Tonmineralien besonders wichtig. Weiterhin gehören zum mineralischen Teil des Bodens die anorganischen Pflanzennährstoffe, vor allem die Kationen Ca2+, Mg2+ und K+, sowie Nitrat und Phosphat. Die Kationen sind teilweise an die Tonmineralien gebunden.
Die Tonmineralien sind schichtförmig aufgebaute quellfähige Aluminiumsilikate, die Wassermoleküle in ihrer Struktur enthalten und die Nährstoff-Kationen binden können.
Die wichtigsten Tonmineralien sind der Kaolinit (Al 2 [(OH) 4 Si 2 O 5 ]) und der Montmorillonit (Al 2 [(OH) 2 Si 4 O 10 ] · n H 2 O) .
Kommt es im Gitter des Montmorillonits zum Austausch von Aluminium-Ionen durch Magnesium-Ionen, werden andere Nährstoff-Kationen zum Ladungsausgleich zwischen die Schichten eingelagert.
Zwischen die Schichten der Tonmineralien können aber nicht nur Nährstoff-Kationen sondern auch organische Verbindungen wie Biozide wie Insektizide, Pestizide oder Herbizide eingelagert werden.

Organische Substanzen

Die im Boden enthaltene abgestorbene pflanzliche und tierische Biomasse wird als Humus bezeichnet. Humus besteht aus hochmolekularen Huminstoffen verschiedener Zusammensetzung, die durch chemische und biochemische Prozesse ständig auf-, ab- und umgebaut werden. Letztendlich werden sie durch Mikroorganismen mittels Luftsauerstoff zu Kohlenstoffdioxid, Wasser und Nitrat abgebaut, d. h. mineralisiert.
Huminstoffe besitzen eine große Oberfläche und haben in ihrer Struktur viele polare funktionelle Gruppen. Dadurch sind sie in der Lage, Wasser und Kationen, z .   B . K + , NH 4 + , Ca 2+ , Mg 2+ als Nährstoffe zu binden. Es können andererseits aber auch Schwermetalle gebunden werden.

Wichtige funktionelle Gruppen der Huminstoffe
Carboxy-Gruppe-COOH
Carbonyl-Gruppe-CO-
Hydroxy-Gruppe-OH
Amino-Gruppe -NH 2
Imino-Gruppe-NH-

Huminstoffe sind gelb bis schwarz gefärbt und teilweise wasserlöslich. Die dunkle Farbe des Wassers z. B. in Moorgebieten wird von gelösten Huminstoffen verursacht.
Huminstoffe sind die wichtigste natürliche Quelle für die Stickstoffversorgung der Pflanzen. Ferner regulieren sie den Kationenaustausch des Wasser- und Nährstoffhaushaltes des Bodens.

Huminstoffe und Tonmineralien sind über chemische Bindungen zum sogenannten „Ton-Humus-Komplex“ miteinander verbunden, wobei die Huminstoffe für die Bindung von Nährstoffen eine größere Wirksamkeit haben als die Tonmineralien. Die wichtigsten Pflanzennährstoffe sind die Kationen K + , Ca 2+ und Mg 2+ sowie Nitrat und Phosphat.
In Mitteleuropa enthalten Ackerböden meist 1-2 % Huminstoffe, die sogenannten Schwarzerdeböden bis zu 7 % und Weideboden bis 10 % Humus.

Da Humus letztlich mineralisiert wird, und Pflanzen während des Wachstums Nährstoffe verbrauchen, muss man landwirtschaftlich genutzten Böden diese Stoffe immer wieder durch Düngung zuführen.

  • Der Boden besteht zu etwa 50 % aus festen Bestandteilen und 50 % aus Poren, die das Bodenwasser und die Bodenluft enthalten.

Bodenbelastung

Belastungen des Bodens erfolgen hauptsächlich durch den sauren Regen (Bild 3), Schwermetalle, Düngemittel und Biozide. Diese Schadstoffeinträge in den Boden können in mehrfacher Weise wirken.

Mögliche negative Wirkungen von Bodenbelastungen können sein:

  • schädliche Wirkungen für Pflanzen und Bodenorganismen
  • Auswirkungen für Tier und Mensch über die Nahrungskette
  • Auswaschen der Schadstoffe ins Grundwasser und damit Gefährdung des Trinkwassers (Bild 4)

Daher ist es sehr wichtig, in der Landwirtschaft Düngemittel und Pflanzenschutzmittel sinnvoll, d. h. optimal und nicht maximal einzusetzen.

  • Saurer Regen hat Auswirkung auf die Boden- und Grundwasserqualität.
  • Schadstoffeintrag in den Boden
Lernhelfer (Duden Learnattack GmbH): "Zusammensetzung des Bodens." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/schuelerlexikon/chemie-abitur/artikel/zusammensetzung-des-bodens (Abgerufen: 20. May 2025, 13:18 UTC)

Suche nach passenden Schlagwörtern

  • Mineralisation
  • Pedosphäre
  • mineralischen Bestandteile
  • Bodenbelastung
  • Humus
  • Boden
  • Huminstoffe
  • Humifizierung
  • funktionelle Gruppen
  • Substrat
  • organische Bestandteile
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Die Elemente der 1. Hauptgruppe – Eigenschaften und wichtige Verbindungen der Alkalimetalle

Zur 1. Hauptgruppe des Periodensystems gehören die Elemente Wasserstoff, Lithium, Natrium, Kalium, Rubidium und Caesium. Wasserstoff, der in der ersten Periode steht, ist ein typisches Nichtmetall. Die übrigen Elemente der 1. Hauptgruppe werden auch Alkalimetalle genannt, sie sind weiche, reaktionsfähige Metalle.

Die Alkalimetalle geben leicht ihr Valenzelektron ab und sind daher sehr reaktiv. Sie kommen in der Natur nur in gebundener Form vor. Wasserstoff ist das häufigste Element im Universum.

Justus Freiherr von Liebig

* 12.05.1803 in Darmstadt
† 18.04.1873 in München

Das Hauptarbeitsgebiet LIEBIGs war die Chemie. Er entwickelte die Liebigsche Elementaranalyse und schuf die Möglichkeiten der künstlichen Düngung. Bekannt ist LIEBIG auch heute noch durch die Entwicklung von „LIEBIGs Fleischextrakt“, der in ganz ähnlicher Zusammensetzung auch heute noch in Brühwürfeln zu finden ist.

Verwendung von Ammoniak

Ammoniak dient in der chemischen Industrie als Ausgangstoff für die Synthese vieler Verbindungen. Der größte Teil des hergestellten Ammoniaks wird zu Düngemitteln weiterverarbeitet, der Rest wird in der organisch-chemischen Industrie z. B. zur Produktion von Kunststoffen und Synthesefasern eingesetzt.
Als Düngemittel kann direkt eine wässrige Lösung von Ammoniak (Ammoniakwasser) verwendet werden, meistens wird Ammoniak aber weiterverarbeitet und in Form von Ammoniumsalzen, Nitraten oder Amiden zum Düngen eingesetzt.

Eutrophierung von Gewässern

Ein Eintrag von Düngemitteln aus der Landwirtschaft, privaten Haushalten und der Industrie in Seen und Flüsse, aber auch in Binnenmeeren führt zu einem höheren Nährstoffangebot für Algen und Uferpflanzen.
Nach zunächst starkem Pflanzenwachstum mit Sauerstoffanreicherung kommt es durch Abbau der erhöhten Masse an toten Organismus zu einer negativen Sauerstoffbilanz. Faulschlammbildung führt zu stinkenden Gewässern, es tritt eine massive Störung des Ökosystems ein. Durch verantwortliche, kontrollierte Nährstoffeinleitung und Investitionen in vermehrte Abwassereinigung kann dieser fatale Prozess aufgehalten werden.

Technische Herstellung von Salpetersäure

Salpetersäure ist eine der drei wichtigsten Säuren in der chemischen Industrie. Sie wird hauptsächlich zur Herstellung von Stickstoffdüngemitteln verwendet. Etwa 10-15 % nutzt man zur Herstellung von organischen Verbindungen, die zur Gewinnung von Fasern und Kunststoffen dienen. Weitere Anwendungen sind die Herstellung von Sprengstoffen und als Ätzmittel für Metalle.
Salpetersäure wird nach dem OSTWALD-Verfahren in drei Teilschritten hergestellt. Zuerst wird Ammoniak mit Luft zu Stickstoffmonooxid oxidiert, das anschließend mit Luft zu Stickstoffdioxid reagiert. Zum Schluss wird das Stickstoffdioxid mit Wasser zu Salpetersäure umgesetzt.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025