Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Mathematik Abitur
  3. 13 Wahrscheinlichkeitstheorie
  4. 13.5 Binomialverteilung
  5. 13.5.8 Zentraler Grenzwertsatz
  6. Wahrscheinlichkeitsverteilungen, Ermitteln

Wahrscheinlichkeitsverteilungen, Ermitteln

Hier kannst du dich selbst testen. So kannst du dich gezielt auf Prüfungen und Klausuren vorbereiten oder deine Lernerfolge kontrollieren.

Multiple-Choice-Test zum Thema "Mathematik - Ermitteln von Wahrscheinlichkeitsverteilungen".

Viel Spaß beim Beantworten der Fragen!

WISSENSTEST

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.
Lernhelfer (Duden Learnattack GmbH): "Wahrscheinlichkeitsverteilungen, Ermitteln." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/schuelerlexikon/mathematik-abitur/artikel/wahrscheinlichkeitsverteilungen-ermitteln (Abgerufen: 09. June 2025, 11:13 UTC)

Suche nach passenden Schlagwörtern

  • Wahrscheinlichkeitsverteilung
  • Wissenstest
  • Test
  • Baumdiagramm
  • Vierfeldertafel
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Grafische Darstellung von Daten

Für die grafische Veranschaulichung von Daten, die durch statistische Untersuchungen gewonnen wurden, nutzt man verschiedene Möglichkeiten, die in starkem Maße durch den Charakter der darzustellenden Daten (quantitative oder qualitative Merkmale, diskrete oder stetige quantitative Merkmale usw.) bestimmt werden.
Wichtige Darstellungsarten sind Stängel-Blatt-Diagramme, Stabdiagramme (auch Strecken- oder Balkendiagramme), Blockdiagramme (Streifendiagramme), Kreisdiagramme, Histogramme (Säulendiagramme) und Polygonzüge.

Häufigkeitsverteilungen, Darstellung

Hier kannst du dich selbst testen. So kannst du dich gezielt auf Prüfungen und Klausuren vorbereiten oder deine Lernerfolge kontrollieren.

Multiple-Choice-Test zum Thema "Mathematik - Darstellung von Häufigkeitsverteilungen".

Viel Spaß beim Beantworten der Fragen!

WISSENSTEST

Zählprinzipien

Bei der Lösung kombinatorischer Probleme sind zwei Zählprinzipien hilfreich – das für k-Tupel und das für Mengen.

Mehrstufige Zufallsexperimente

Besteht ein zufälliger Vorgang aus mehreren, nacheinander ablaufenden Teilvorgängen (oder aus Teilvorgängen, die als nacheinander ablaufend interpretiert werden können), so spricht man von einem mehrstufigen Zufallsexperiment (Zufallsversuch).

Kenngrößen von Zufallsgrößen

Eine Zufallsgröße wird vollständig durch ihre Verteilungsfunktion beschrieben. Diese gibt an, welche Werte die Zufallsgröße annehmen kann und mit welchen Wahrscheinlichkeiten sie dies tut.
In der Praxis möchte man allerdings meist mit möglichst wenigen, aber typischen Angaben auskommen, denn oftmals reicht schon eine grobe Vorstellung von der Zufallsgröße aus. Es kommt hinzu, dass die Verteilungsfunktion mitunter gar nicht oder nur schwer bestimmbar ist.

Man sucht deshalb nach Kenngrößen (manchmal spricht man auch von Parametern), die einen hinreichenden Aufschluss und eine quantitative Charakterisierung einer Zufallsgröße ermöglichen. Dies leisten Kenngrößen wie Erwartungswert, Median und Modalwert sowie die Streuung (bzw. Varianz) der Zufallsgröße.
Zur Charakterisierung der Asymmetrie einer Zufallsgröße benutzt man darüber hinaus die Kenngröße Schiefe. Eine Definition dieser Kenngröße geht auf den Vater der mathematischen Statistik KARL PEARSON (1857 bis 1936) zurück.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025