Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Mathematik
  3. 5 Gleichungen und Ungleichungen
  4. 5.3 Äquivalentes Umformen von Gleichungen und Ungleichungen
  5. 5.3.2 Äquivalentes Umformen von Gleichungen
  6. Muhammad ibn Musa Al-Chwarizmi

Muhammad ibn Musa Al-Chwarizmi

MUHAMMAD IBN MUSA AL-CHWARIZMI, persisch-arabischer Mathematiker
* um 780 Bagdad (heute in Irak)
† um 850

MUHAMMAD IBN MUSA AL-CHWARIZMI (auch AL-KHWARIZMI) war ein persisch-arabischer Mathematiker, der etwa von 780 bis 850 lebte und insbesondere am Hof des Kalifen AL-MANSUR in Bagdad wirkte.
AL-CHWARIZMI führte die indische Ziffernschreibweise und damit das dekadische Positionssystem in den arabischen Kulturkreis ein und beschrieb diese in einem Lehrbuch, das 820 erschien. In diesem Buch findet man vor allem die Gesamtheit der Regeln (Handlungsvorschriften) zum formalen Lösen von Gleichungen – und aus dem Namen des Autors wurde für Handlungsvorschriften der Begriff „Algorithmus“ abgeleitet.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

MUHAMMAD IBN MUSA AL-CHWARIZMI (manchmal auch AL-KHWARIZMI oder AL-CHARISMI geschrieben) war ein persisch-arabischer Mathematiker, der etwa von 780 (als Geburtsjahre werden mitunter 783 bzw. 787 angegeben) bis etwa 850 lebte.
Er wirkte insbesondere am Hofe des Kalifen AL-MANSUR (auch AL-MA'MUN) in Bagdad.

Seine Leistungen für die Mathematik sind bedeutsam. Er führte die indische Ziffernschreibweise und damit das dekadische Positionssystem in den arabischen Kulturkreis ein und beschrieb diese in seinem Lehrbuch „Hisab al'schabr wal mukábala“ (Das Buch vom Hinüberschaffen und vom Zusammenfassen), welches 820 erschien. Diese Buch wurde im 12. Jahrhundert in Spanien durch ROBERT VON CHESTER übersetzt und von da aus traten die sogenannten arabischen Ziffern (die eigentlich in Indien erfunden worden sind) ihren Siegeszug in ganz Europa an.

Im erwähnten Buch findet man vor allem die Gesamtheit der Regeln zum formalen Lösen von Gleichungen. Diese Regeln (Handlungsvorschriften) bildeten lange Zeit die Grundlage für die Gleichungslehre – und für Handlungsvorschriften wurde der Begriff „Algorithmus“ aus dem Namen von AL-CHWARIZMI abgeleitet.
„Dixit Algoritmi ... “ (So sagt Al-Chwarizmi ...), war ein geflügeltes Wort unter Rechenmeistern im Mittelalter, um die Korrektheit einer Rechnung zu unterstreichen.
Aus dem Namen des Buches „Hisab al'schabr wal mukábala“ leitet sich auch der Begriff Algebra für die Lehre von den Lösungsmethoden algebraischer Gleichungen ab.

Der Algorithmusbegriff spielt in der Informatik eine herausragende Rolle, denn Grundlage für die Entwicklung und Nutzung informationsverarbeitender Technik sind Algorithmen. Für den „Hausgebrauch“ reicht der auf AL-CHWARIZMI basierende Begriff völlig aus: Ein Algorithmus ist eine Verarbeitungsvorschrift, die aus einer endlichen Folge von eindeutig ausführbaren Anweisungen besteht, mit der man eine Vielzahl gleichartiger Aufgaben lösen kann.

Lernhelfer (Duden Learnattack GmbH): "Muhammad ibn Musa Al-Chwarizmi." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/schuelerlexikon/mathematik/artikel/muhammad-ibn-musa-al-chwarizmi (Abgerufen: 10. July 2025, 11:52 UTC)

Suche nach passenden Schlagwörtern

  • Al-Khwarizmi
  • Al-Charismi
  • Algorithmus
  • Algebra
  • Al-Chwarizmi
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Größter gemeinsamer Teiler

Ist eine Zahl g sowohl Teiler einer Zahl a als auch Teiler einer Zahl b, so heißt g gemeinsamer Teiler von a und b.
Der größte gemeinsame Teiler wird mit ggT bezeichnet.
Der Begriff „größter gemeinsamer Teiler“ kann auch auf mehr als zwei Zahlen erweitert werden.
Man erhält den ggT, indem man die höchsten Potenzen aller Primfaktoren multipliziert, die in allen Zerlegungen gemeinsam vorkommen.

Positionssysteme

Positionssysteme kommen nur in vier Zivilisationen mit geschriebener Sprache vor: in Mesopotamien, in China, in der Mayakultur Zentralamerikas und im alten Indien.
In einem Positionssystem mit der Basiszahl b wird eine Zahl durch eine Folge von Grundziffern a i dargestellt: Dabei bestimmt die Basiszahl die Anzahl der benötigten Grundziffern. So sind es im Dezimalsystem 10, im Dualsystem 2, im Oktalsystem 8, im Hexadezimalszystem 16 und im Sexagesimalsystem 60 Grundziffern.

Kleinstes gemeinsames Vielfaches

Ist eine Zahl v sowohl Vielfaches einer Zahl a als auch Vielfaches einer Zahl b, so heißt v gemeinsames Vielfaches von a und b.

Das kleinste gemeinsame Vielfache wird mit kgV bezeichnet.

Der Begriff „kleinstes gemeinsames Vielfaches“ kann auch auf mehr als zwei Zahlen erweitert werden.

Man erhält das kgV aus den Primfaktorzerlegungen der Zahlen, indem man alle vorkommenden Primfaktoren in ihrer höchsten Potenz multipliziert.

Primzahlen

Eine Zahl p, die außer den (trivialen) Teilern 1 und p (sich selbst) keine weiteren Teiler hat, heißt Primzahl .
Die Zahl 1 zählt nicht zu den Primzahlen.
Die ersten Primzahlen sind also 2, 3, 5, 7, 11, 13, 17, 19.

Immer wieder hat man versucht, Prinzipien zu finden, mit deren Hilfe die nächste Primzahl bestimmt werden kann.
Heute weiß man, dass es keinen geschlossenen Ausdruck (keine Formel) gibt, nach der sich die n-te Primzahl berechnen lässt.
Man weiß aber auch, dass es keine größte Primzahl gibt, d. h., die Menge der Primzahlen ist unendlich.

Der Beweis dafür ist einfach und wird indirekt geführt:
Man nimmt an, pn  sei die größte Primzahl.
Nun bildet man die Zahl z als Produkt aller bekannten Primzahlen,
z235...pn . Für die Zahl z + 1 gilt nun z + 1  1 mod aller pi , d. h. z + 1 ist durch keine der bekannten Primzahlen teilbar. Damit ist z + 1 entweder eine Primzahl (natürlich größer als pn ) oder sie enthält eine Primzahl als Teiler, die aber auch größer als pn  sein muss, oder wir haben eine neue Primzahl gefunden, die kleiner als pn  ist. Also war die Annahme falsch und es gibt keine größte Primzahl.

In der Folge der nach ihrer Größe geordneten Primzahlen gibt es aber auch Lücken beliebiger Länge.

Auch dies ist einfach zu beweisen:
Man bildet das Produkt p aller Zahlen von 2 bis n: p234...n 
Damit ist p + 2 teilbar durch 2; p + 3 teilbar durch 3, ... , p + n teilbar durch n.
Die aufeinanderfolgenden Zahlen p + 2, p + 3, p + 4 bis p + n sind damit allesamt keine Primzahlen, man hat also eine Lücke von der Länge n – 1.

Eine Zahl p, die außer den (trivialen) Teilern 1 und p (sich selbst) keine weiteren Teiler hat, heißt Primzahl.
Die Zahl 1 zählt nicht zu den Primzahlen.
Die ersten Primzahlen sind also 2, 3, 5, 7, 11, 13, 17, 19.
Immer wieder hat man versucht, Prinzipien zu finden, mit deren Hilfe die nächste Primzahl bestimmt werden kann.
Heute weiß man, dass es keinen geschlossenen Ausdruck (keine Formel) gibt, nach der sich die n-te Primzahl berechnen lässt.
Man weiß aber auch, dass es keine größte Primzahl gibt, d. h., die Menge der Primzahlen ist unendlich.

Zahlenkongruenzen

Zwei Zahlen a 1 und a 2 heißen kongruent nach dem Modul b (modulo b), wenn sie bei Division durch b den gleichen Rest lassen, also zur gleichen Restklasse modulo b gehören.
Man schreibt: a 1 ≡ a 2 mod b

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025