Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Physik Abitur
  3. 8 Spezielle Relativitätstheorie
  4. 8.4 Relativistische Dynamik
  5. 8.4.0 Relativistische Dynamik
  6. Invariante Größen in der klassischen Physik und in der speziellen Relativitätstheorie

Invariante Größen in der klassischen Physik und in der speziellen Relativitätstheorie

Es gibt in der klassischen Physik und in der Relativitätstheorie eine Reihe von Größen, die ihren Wert bzw. ihre Form nicht ändern, wenn man von einem Inertialsystem in ein anderes übergeht. Solche Größen werden als invariante Größen bezeichnet. Auch für Gesetze gibt es eine Invarianz. Die Bestimmung von invarianten Größen bzw. Gesetzen trägt dazu bei, physikalische Phänomene und Zusammenhänge besser zu verstehen.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Was heißt Invarianz?

So ist z.B. die Masse eines Körpers in der klassischen Physik eine invariante Größe, denn ihr Wert bleibt stets gleich, unabhängig von dem Bezugssystem, in dem man sich befindet. In der speziellen Relativitätstheorie dagegen ist die Masse abhängig von der Geschwindigkeit, mit der sich der Körper bewegt. Sie ist im Rahmen dieser Theorie keine invariante, sondern eine relative Größe.
Im Unterschied dazu ist z.B. die Beschleunigung sowohl in der klassischen Physik als auch in der Relativitätstheorie eine invariante Größe, ändert also ihren Wert nicht, wenn das Bezugssystem gewechselt wird.

Beispiele für invariante und nicht invariante Größen

In der nachfolgenden Übersicht sind ausgewählte Größen zusammengestellt, die teils in der klassischen Physik, teils in der Relativitätstheorie invariant sind, wobei wir stets von Inertialsystemen (unbeschleunigten Bezugssystemen) ausgehen.

physikalische Größeklassische Mechanikspezielle Relativitätstheorie
Zeitinvariantnicht invariant (relativ)
Zeitdauer (Zeitintervall)invariantnicht invariant (relativ)
Weginvariantinvariant
Länge eines Körpers
(Abstand zweier Punkte)
invariantnicht invariant (relativ)
Geschwindigkeitnicht invariant (relativ)nicht invariant (relativ)
Änderung der Geschwindigkeitinvariantinvariant
Beschleunigunginvariantinvariant
Masseinvariantnicht invariant (relativ)
Impulsnicht invariant (relativ)nicht invariant (relativ)
kinetische Energienicht invariant (relativ)nicht invariant (relativ)

Sowohl in der klasischen Physik als auch in der speziellen Relativitätstheorie sind auch der Energieerhaltungssatz und der Impulserhaltungssatz invariant.

Lernhelfer (Duden Learnattack GmbH): "Invariante Größen in der klassischen Physik und in der speziellen Relativitätstheorie." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/schuelerlexikon/physik-abitur/artikel/invariante-groessen-der-klassischen-physik-und-der-speziellen (Abgerufen: 20. May 2025, 18:33 UTC)

Suche nach passenden Schlagwörtern

  • Invarianz
  • Zeitdauer
  • Weg
  • Zeit
  • spezielle Relativitätstheorie
  • Geschwindigkeit
  • klassische Physik
  • Masse
  • invariante Größen
  • Beschleunigung
  • kinetische Energie
  • Impuls
  • Zeitintervall
  • Länge
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Addition von Geschwindigkeiten

Während sich in der klassischen Physik bei gleich gerichteten Bewegungen die Beträge der Geschwindigkeiten addieren, gilt für die relativistische Addition von Geschwindigkeiten ein etwa komplizierterer Zusammenhang:
u = u ' + v 1 + u ' ⋅ v c 2
Die resultierende Geschwindigkeit ist entsprechend einer Grundaussage der speziellen Relativitätstheorie immer kleiner als die Vakuumlichtgeschwindigkeit.

Grundlegende Prinzipien und Bedeutung der ART

Die spezielle Relativitätstheorie bezieht sich auf Inertialsysteme. Der Einfluss der Gravitation wird ausgeblendet. In Verallgemeinerung seiner speziellen Relativitätstheorie auf beliebige Bezugssysteme unter Einschluss von Gravitationswirkungen entwickelte ALBERT EINSTEIN die allgemeine Relativitätstheorie, die er 1916 veröffentlichte. Sie begründet neue Vorstellungen über Raum und Zeit und ist z.B. die Grundlage aller modernen kosmologischen Theorien.

Grundaussagen der speziellen Relativitätstheorie

Mit der im Jahre 1905 veröffentlichten speziellen Relativitätstheorie, kurz auch als SRT bezeichnet, entwickelte der deutsche Physiker ALBERT EINSTEIN (1879-1955) eine neue Vorstellung von Raum und Zeit, die sich von den bisher allgemein anerkannten Auffassungen der klassischen Physik deutlich unterschied. Dabei ging er von zwei Grundaussagen oder Postulaten aus, die sich inzwischen längst als zutreffend erwiesen haben:

  • Alle Inertialsysteme sind gleichberechtigt (Relativitätsprinzip).
  • Die Vakuumlichtgeschwindigkeit ist überall gleich groß. Sie ist die größtmögliche Geschwindigkeit für die Signalübertragung (Prinzip von der Konstanz der Lichtgeschwindigkeit).

LORENTZ-Transformation

Im Zusammenhang mit der Entwicklung seiner Elektronentheorie beschäftigte sich der niederländische Physiker HENDRIK ANTOON LORENTZ auch mit der Elektrodynamik bewegter Körper und mit der Deutung des MICHELSON-MORLEY-Experiments. Er entwickelte 1895 auf der Grundlage der klassischen Vorstellungen Gleichungen, die es ermöglichten, die räumlichen und zeitlichen Koordinaten von einem Inertialsystem in ein anderes umzurechnen. Diese Gleichungen werden als LORENTZ-Transformationsgleichungen oder als LORENTZ-Transformation bezeichnet. Die richtige physikalische Deutung erhielten sie 10 Jahre später durch ALBERT EINSTEIN in seiner speziellen Relativitätstheorie.

Längenkontraktion

In der klassischen Physik hat die Länge eines Körpers und damit der Abstand zweier Punkte einen bestimmten, stets gleichen Wert. In der Relativitätstheorie dagegen zeigt sich, dass die Länge eines Körpers vom Bezugssystem abhängig ist. Längenkontraktion bedeutet:
In seinem Ruhesystem hat ein Körper seine größte Länge, die Eigenlänge. In einem dazu bewegten System ist die Länge um den Faktor 1 / k = 1 − v 2 / c 2 (Kehrwert des LORENTZ-Faktors) geringer.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025