Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Physik Abitur
  3. 4 Elektrizitätslehre und Magnetismus
  4. 4.2 Das magnetische Feld
  5. 4.2.3 Geladenen Teilchen und Stoffe in magnetischen Feldern
  6. Massenspektrografie

Massenspektrografie

Viele Elemente bestehen aus Isotopengemischen. Auch bei Kernreaktionen entstehen unterschiedliche Isotope. Sie unterscheiden sich in ihren Massen zum Teil nur geringfügig. Die Methode, Teilchen nach ihrer unterschiedlichen Masse voneinander zu trennen und damit zu identifizieren, bezeichnet man als Massenspektrografie. Die entsprechenden Geräte werden als Massenspektrografen oder Massenspektrometer bezeichnet. Den ersten Massenspektrografen entwickelte der britische Physiker und Chemiker FRANCIS WILLIAM ASTON (1877-1945) im Jahr 1919.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Er erhielt für seine wissenschaftlichen Leistungen, insbesondere für die Entdeckung und Massebestimmung von über 200 Isotopen, 1922 den Nobelpreis für Chemie.

Bild 1 zeigt eine etwas andere Bauform eines Massenspektrografen. Das Grundprinzip ist aber das gleiche wie bei ASTON. Es soll nachfolgend genauer beschrieben werden.
Von einer Ionenquelle werden geladenen Ionen abgegeben, die in der Regel eine unterschiedliche Geschwindigkeit haben. Diese Ionen - es könnten auch Isotope eines Isotopengemisches sein - werden durch Blenden auf ein schmales Bündel begrenzt. Anschließend treten sie in ein gekreuztes elektrisches und magnetisches Feld ein, wobei beide Felder senkrecht zueinander stehen. Wenn beide Felder homogen sind und wir von positiv geladenen Teilchen ausgehen, dann gilt:

  • Aufbau eines Massenspektrografen mit gekreuzten Feldern und anschließender magnetischer Ablenkung
  • Im elektrischen Feld wirkt auf die positiv geladenen Teilchen eine konstante Feldkraft F = Q ⋅ E nach unten, wobei E die Feldstärke des elektrischen Feldes ist.
  • Im magnetischen Feld wirkt auf die bewegten geladenen Teilchen die LORENTZ-Kraft nach oben (Linke-Hand-Regel oder Rechte-Hand-Regel). Da die Richtung der Geschwindigkeit und die Richtung des magnetischen Feldes senkrecht zueinander sind, hat die LORENTZ-Kraft den Betrag

F = Q ⋅ v ⋅ B , wobei v die Teilchengeschwindigkeit und B die magnetische Flussdichte sind.

Sind diese beiden Kräfte gleich groß, so durchlaufen die Teilchen das gekreuzte elektrische und magnetische Feld geradlinig. Die Bedingung dafür ist:
Q ⋅ E = Q ⋅ v ⋅ B oder v = E B E elektrische Feldstärke B magnetische Flussdichte

Bringt man Blenden an, so gelangen nur Teilchen einer bestimmten Geschwindigkeit weiter. Das gekreuzte elektrische und magnetische Feld wirkt somit als Geschwindigkeitsfilter. Anschließend treten die Teilchen gleicher Geschwindigkeit senkrecht in ein homogenes Magnetfeld ein. Dann wirkt die LORENTZ-Kraft als Radialkraft und es gilt:
Q ⋅ v ⋅ B ' = m ⋅ v 2 r Division durch v ergibt Q ⋅ B ' = m ⋅ v r und mit v = E B : Q ⋅ B ' = m ⋅ E r ⋅ B oder Q m = E r ⋅ B ⋅ B '

Das bedeutet: Konstante und homogene Felder vorausgesetzt, ist der Radius der Kreisbahn umgekehrt proportional zur spezifischen Ladung der Teilchen. Damit lässt sich aus der elektrischen Feldstärke E, den magnetischen Flussdichten B und B' und dem Radius r die spezifische Ladung bestimmen. Kennt man die Ladung der Teilchen, kann aus der spezifischen Ladung ihre Masse berechnet werden.

Mithilfe massenspektroskopischer Untersuchungen fand man heraus, dass fast alle Elemente aus Isotopengemischen bestehen.
Heute verwendet man sehr unterschiedlich gebaute Massenspektrografen. Am gebräuchlichsten sind sogenannte Quadrupol-Massenspektrografen. Dabei durchlaufen die geladenen Teilchen eine Anordnung aus vier parabelförmigen Elektroden, an die eine Kombination aus einem elektrischen Gleichspanungs- und Wechselspannungsfeld angelegt wird. Bei einer bestimmten Kombination dieser Felder gelangen nur Teilchen bestimmter Masse und Energie durch die Anordnung.
Reaktionsprodukte nach Kernreaktionen werden meist in Teilchenspektrografen untersucht. Dabei wird der Impuls durch magnetische Ablenkung und die Energie durch Messung der Flugzeit bestimmt.

Lernhelfer (Duden Learnattack GmbH): "Massenspektrografie." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/schuelerlexikon/physik-abitur/artikel/massenspektrografie (Abgerufen: 13. August 2025, 02:41 UTC)

Suche nach passenden Schlagwörtern

  • Massenspektrografie
  • Massenspektrograph
  • Francis William Aston
  • gekreuzte Felder
  • Massenspektrograf
  • Massenspektrometer
  • Massenspektrographie
  • Geschwindigkeitsfilter
  • Isotopengemisch
  • Kernreaktion
  • Simulation
  • Quadrupol-Massenspektrografen
  • Teilchenspektrografen
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Magnetische Flaschen und magnetische Linsen

Geladene Teilchen, die sich in einem Magnetfeld bewegen, werden durch dieses Magnetfeld aufgrund der dann wirkenden LORENTZ-Kraft beeinflusst. Unter geeigneten Bedingungen bilden die geladenen Teilchen geschlossene Bahnen, werden also durch das Magnetfeld in einem bestimmten Raumbereich gehalten. Man spricht dann von einer magnetischen Flasche.
Die Beeinflussung von bewegten geladenen Teilchen durch Magnetfelder kann auch genutzt werden, um Anordnungen zu schaffen, die auf Elektronen oder andere geladene Teilchen ähnlich wie eine optische Linse wirken. Man spricht dann von einer magnetischen Linse, die z.B. bei Elektronenmikroskopen oder Fernsehbildröhren angewendet wird.

Wissenstest, Magnetische Felder

Dauer- und Elektromagnete werden in vielen Bereichen der Technik genutzt. Im Magnetfeld der Erde können wir uns mithilfe eines Kompasses orientieren. die Beschreibung von magnetischen Feldern kann, wie bei elektrischen Feldern, mit dem Modell Feldlinienbild oder mit Feldgrößen erfolgen.

Im Test können Sie prüfen, wie fundiert Ihre Kenntnisse über magnetische Felder sind. 

Hier kannst du dich selbst testen. So kannst du dich gezielt auf Prüfungen und Klausuren vorbereiten oder deine Lernerfolge kontrollieren.

Multiple-Choice-Test zum Thema "Physik - Magnetische Felder".

Viel Spaß beim Beantworten der Fragen!

WISSENSTEST

Die Gegenfeldmethode

Die Gegenfeldmethode ist ein Verfahren, mit dem man die Geschwindigkeit und damit die Energie von geladenen Teilchen (Elektronen, Ionen) bestimmen kann. Dabei wird genutzt, dass man in einem elektrischen Längsfeld durch Veränderung der Spannung die Geschwindigkeit der bewegten geladenen Teilchen bis auf null aufbremsen kann. Aus dieser Abbremsspannung ergibt sich die Geschwindigkeit der geladenen Teilchen.

Robert Andrews Millikan

* 22.03.1868 in Morrison (Illinois)
† 19.12.1953 in San Marino (Kalifornien)

Er war ein vielseitiger und bedeutender amerikanischer Physiker. Seine größte wissenschaftliche Leistung ist die experimentelle Präzisionsbestimmung der Elementarladung mit der Tröpfchenmethode (MILLIKAN-Versuch), für die er 1923 den Nobelpreis für Physik erhielt. MILLIKAN beschäftigte sich darüber hinaus mit ultravioletter Strahlung, Röntgenstrahlung und kosmischer Strahlung. Außerdem erfüllte er als Präsident des California Institute of Technology in Pasadena und der amerikanischen physikalischen Gesellschaft wichtige wissenschaftsorganisatorische Aufgaben.

Millikan-Versuch zur Bestimmung der Elementarladung

In der zweiten Hälfte des 19. Jahrhunderts wurde die Existenz von Elektronen nachgewiesen und der Begriff Elektron in die Physik eingeführt. Bekannt war auch, dass Elektronen negativ geladen sind. Die genaue Bestimmung dieser Ladung, der Elementarladung, gelang erstmals in den Jahren 1909-1913 dem amerikanischen Physiker ROBERT ANDREWS MILLIKAN (1868-1953). Für seine Präzisionsbestimmungen der Elementarladung erhielt MILLIKAN 1923 den Nobelpreis für Physik. Der Versuch selbst, der die Bezeichnung MILLIKAN-Versuch trägt, gehört zu den grundlegenden Experimenten der Physik.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025