Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Physik Abitur
  3. 2 Mechanik
  4. 2.8 Mechanische Schwingungen und Wellen
  5. 2.8.1 Entstehung und Beschreibung mechanischer Schwingungen
  6. Resonanz

Resonanz

Schwingende Körper (Schwinger, Oszillatoren) können durch Energiezufuhr von außen zu erzwungenen Schwingungen angeregt werden. Ist die Erregerfrequenz gleich der Eigenfrequenz des Schwingers, so erreicht die Amplitude der Schwingung ein Maximum. Das wird als Resonanz bezeichnet. Die Resonanzbedingung lautet:

f E = f 0 f E Erregerfrequenz f 0 Eigenfrequenz des Schwingers

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Wird ein schwingungsfähiger Körper - wir bezeichnen ihn nachfolgend als Schwinger oder Oszillator - einmalig ausgelenkt und dann sich selbst überlassen, so führt er freie Schwingungen (Eigenschwingungen) mit einer Frequenz aus, die nur von den Eigenschaften des Schwingers abhängt. Diese Frequenz wird als Eigenfrequenz bezeichnet.

Schlägt man z. B. eine Stimmgabel für den Kammerton a an, dann schwingt diese aufgrund ihres Baus mit einer Eigenfrequenz von 440 Hz. Ein einmalig ausgelenktes Fadenpendel schwingt mit einer Eigenfrequenz, die von der Pendellänge abhängt.
Wird einem Schwinger durch Anregung von außen oder durch Kopplung mit einem zweiten Schwinger Energie zugeführt, so führt er erzwungene Schwingungen aus. Der „Energielieferant“ wird Erreger, seine Frequenz Erregerfrequenz genannt (Bild 1).

  • Kopplung zweier Fadenpendel. Die Energie wird von einem Pendel zum anderen übertragen.

Liegt die Erregerfrequenz in der Nähe der Eigenfrequenz des Schwingers, so vergrößert sich seine Amplitude. Sie erreicht ein Maximum, wenn die Erregerfrequenz näherungsweise gleich der Eigenfrequenz ist. Dieser Fall wird als Resonanz bezeichnet.

Wie stark sich die Amplitude des Schwingers im Resonanzfall vergrößert, hängt von der Stärke der Dämpfung ab (Bild 2). Bei geringer Dämpfung kann die Amplitude sehr groß werden und es kann sogar zu einer Zerstörung des Schwingers kommen.

  • Abhängigkeit der Amplitude von der Erregerfrequenz: Die Amplitude ist am größten, wenn die Erregerfrequenz gleich der Eigenfrequenz ist.

Erwünschte und unerwünschte Resonanz

Wie viele andere physikalische Erscheinungen ist Resonanz manchmal erwünscht und wird genutzt, manchmal ist sie unerwünscht und muss verhindert werden.
Erwünschte Resonanz finden wir z. B. bei Musikinstrumenten. Viele Musikinstrumente, etwa Gitarren (Bild 3), Geigen, Cellos oder Kontrabässe, verfügen über Resonanzkörper. Diese sind so gebaut, dass bei möglichst vielen Frequenzen ein Mitschwingen erfolgt. Durch den Resonanzkörper wird entscheidend der Klang des betreffenden Instruments bestimmt. Genutzt wird die Resonanz bei Zungenfrequenzmessern. Das sind Messgeräte zur Bestimmung der Frequenz.

Unerwünschte Resonanz dagegen ist das Mitschwingen von Fundamenten bei Maschinen, von Brücken, von Autoteilen oder Fensterscheiben oder das Mitschwingen von hohen Gebäuden oder Türmen. Tritt dort Resonanz auf, so können die Amplituden der Schwingungen so groß werden, dass Schäden oder gar Zerstörungen auftreten. Man spricht dann von einer Resonanzkatastrophe.

Ein klassisches Beispiel für eine solche Katastrophe ist der Einsturz der Tacoma-Hängebrücke in den USA (Bild 4). Diese Ende der dreißiger Jahre des 20. Jahrhunderts gebaute, 1 km lange Hängebrücke stürzte 1940 ein, obwohl zu diesem Zeitpunkt eine relativ geringe Windstärke herrschte.
Durch Windstöße, die zufällig etwa mit der Eigenfrequenz der Brücke erfolgten, schaukelten sich die Schwingungen der Brücke immer mehr auf. Das führte schließlich zum Einsturz. Ein zufällig anwesender Wissenschaftler, der die schon mehrfach beobachteten Schwingungen der Brücke untersuchen wollte, macht mit seiner Schmalfilmkamera sensationelle Aufnahmen von Einsturz der Brücke.

Lernhelfer (Duden Learnattack GmbH): "Resonanz." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/schuelerlexikon/physik-abitur/artikel/resonanz (Abgerufen: 09. June 2025, 01:01 UTC)

Suche nach passenden Schlagwörtern

  • Oszillator
  • Schwinger
  • Erregerfrequenz
  • erzwungene Schwingungen
  • Resonanzkatastrophe
  • freie Schwingungen
  • Eigenfrequenz
  • erwünschte Resonanz
  • Simulation
  • Resonanz
  • unerwünschte Resonanz
  • Resonanzbedingung
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Federschwinger

Ein Federschwinger oder Federpendel ist ein einfacher mechanischer Schwinger, bei dem ein an einer elastischen Feder befestigter Körper, der näherungsweise als punktförmig angesehen werden kann, in einer Richtung hin- und herschwingt.
Die Schwingungsdauer (Periodendauer) eines solchen Federschwingers hängt von der Masse des Pendelkörpers und von den elastischen Eigenschaften der Feder ab.

Schwingende Flüssigkeitssäulen und schwimmende Körper

Harmonische mechanische Schwingungen werden nicht nur von Federschwingern und Fadenpendel durchgeführt. Lässt man eine Flüssigkeitssäule in einem U-förmigen Rohr hin- und herschwingen, so führt diese Flüssigkeitssäule ebenfalls harmonische Schwingungen aus, wobei die Schwingungsdauer nur vom Rohrdurchmesser und vom Volumen der eingefüllten Flüssigkeit abhängig ist.
Auch ein Körper, der in einer Flüssigkeit schwimmt, kann eine harmonische Schwingung ausführen, wobei die Schwingungsdauer in diesem Falle von den Dichten des Körpers und der Flüssigkeit sowie von den Abmessungen des Körpers abhängig ist.

Gedämpfte harmonische Schwingungen

Mechanische Schwingungen können ungedämpft oder gedämpft verlaufen. Solche ungedämpften Schwingungen treten immer dann auf, wenn ein Schwinger einmalig angeregt wurde und sich selbst überlassen bleibt, also freie Schwingungen ausführt, wie das z.B. bei einer einmal angeschlagenen Saite einer Gitarre der Fall ist. Aufgrund von Reibungseffekten wird dann ständig mechanische Energie in thermische Energie umgewandelt. Damit verringert sich die Amplitude der Schwingungen.
Bei harmonischen mechanischen Schwingungen kann man die Abnahme der Amplitude auch mathematisch erfassen.

Schall und seine Eigenschaften

Alles, was akustisch mit den Ohren wahrgenommen werden kann, ist Schall. Schall geht von Schallquellen aus. Seinem Wesen nach ist Schall eine longitudinale mechanische Welle, bei der sich zeitlich periodisch der Druck ändert. Schall breitet sich in einem Stoff mit einer bestimmten Geschwindigkeit, der Schallgeschwindigkeit, aus. Er kann reflektiert, gebrochen und absorbiert werden. Da Schall eine mechanische Welle ist, treten bei Schallwellen auch Beugung und Interferenz auf.

Schwingungsdämpfer

Schwingungsdämpfer oder Stoßdämpfer bei Fahrzeugen dienen dazu, einerseits den Fahrkomfort zu verbessern und andererseits die Verkehrssicherheit der Fahrzeuge zu erhöhen. Die Schwingungsdämpfer sind so angeordnet und konstruiert, dass die durch Fahrbahnunebenheiten hervorgerufenen Schwingungen stark gedämpft werden und damit die Personen im Inneren des Fahrzeugs keinen starken Stößen ausgesetzt sind.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025