Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Physik
  3. 6 Atom- und Kernphysik
  4. 6.2 Kernumwandlungen und Radioaktivität
  5. 6.2.3 Radioaktive Strahlung
  6. Eigenschaften radioaktiver Strahlung

Eigenschaften radioaktiver Strahlung

Radioaktive Strahlung hat eine Reihe von Eigenschaften, die für ihre Wirkungen, ihren Nachweis und ihre Anwendungen von Bedeutung sind. Dazu gehört insbesondere, dass radioaktive Strahlung

  • Energie und Ionisationsvermögen besitzt,
  • teilweise in elektrischen und magnetischen Feldern abgelenkt wird,
  • Stoffe z. T. durchdringen kann und z. T. von ihnen absorbiert wird.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Radioaktive Strahlung hat eine Reihe von Eigenschaften, die für ihre Wirkungen, ihren Nachweis und ihre Anwendungen von Bedeutung sind. Dabei ist zwischen Alphastrahlung, Betastrahlung und Gammastrahlung zu differenzieren.

Energie radioaktiver Strahlung

Radioaktive Strahlung besitzt Energie, wobei diese Energie von den jeweiligen Bedingungen abhängig ist. Es gibt deshalb zwei unterschiedliche Möglichkeiten, die Energie anzugeben:

  1. Für eine bestimmte Kernumwandlung lässt sich die Energie der dabei auftretenden radioaktiven Strahlung messen und ein bestimmter Wert angeben.
  2. Allgemein lassen sich für die einzelnen Arten von radioaktiver Strahlung nur Bereiche für die Energie angeben.

Nachfolgend sind für die einzelnen Strahlungsarten die Energiebereiche angegeben, innerhalb derer die Energie der radioaktiven Strahlung in den meisten Fällen liegt:

α − Strahlung                8 ⋅ 10 -13 J − 13 ⋅ 10 − 13 J                                       (5 MeV - 8 MeV) β − Strahlung                 10 -13 J − 5 ⋅ 10 − 13 J                                        (0 ,6 MeV - 3 MeV) γ − Strahlung                   0 ,5 ⋅ 10 -13 J − 4 ⋅ 10 − 13 J                                         (0 ,2 MeV - 2 ,5 MeV)

Die bei der Kernspaltung entstehenden Neutronen besitzen eine kontinuierliche Energieverteilung. Ihre mittlere Energie beträgt etwa 2,4 ⋅ 10 − 13 J = 1,5  MeV .

Infolge der Energie, die radioaktive Strahlung besitzt, können Gase ionisiert, Filme geschwärzt oder Zellen verändert werden.
Das Ionisationsvermögen ist bei der Alphastrahlung am größten, bei der Gammastrahlung am kleinsten. Das Verhältnis beträgt zwischen den drei Arten von Strahlung:

α − Strahlung   :   β − Strahlung   :   γ − Strahlung      10 000         :         100            :             1

Ausbreitung radioaktiver Strahlung

Die Ausbreitung radioaktiver Strahlung erfolgt von einer Strahlungsquelle aus geradlinig. Eine Ablenkung von Alpha- und Betastrahlung kann durch elektrische oder magnetische Felder erfolgen.

Im elektrischen Feld (Bild 2) wird Alphastrahlung (doppelt positiv geladene Heliumkerne) und Betastrahlung (Elektronen oder Positronen) abgelenkt. Die Richtung der Ablenkung ergibt sich aus der Richtung des Feldes und aus der Ladung der Teilchen. Gammastrahlung als elektromagnetische Welle wird durch elektrische Felder nicht abgelenkt.

  • Ablenkung radioaktiver Strahlung im elektrischen Feld

Im magnetischen Feld (Bild 3) wird Alphastrahlung (doppelt positiv geladene Heliumkerne) und Betastrahlung (Elektronen oder Positronen) abgelenkt. Die Richtung der Ablenkung ergibt sich aus der Rechte-Hand-Regel (UVW-Regel). Gammastrahlung als elektromagnetische Welle wird durch magnetische Felder nicht abgelenkt.

  • Ablenkung radioaktiver Strahlung im magnetischen Feld

Durchdringungsvermögen und Absorptionsvermögen radioaktiver Strahlung

Trifft radioaktive Strahlung auf Stoffe, so wird sie z. T. hindurchgelassen und z. T. absorbiert (aufgenommen). Wie viel Strahlung durch einen Stoff hindurchgeht bzw. von ihm absorbiert wird, hängt ab von

  • der Art der Strahlung,
  • der Intensität (Energie) der Strahlung,
  • der Art des durchstrahlten Stoffes,
  • der Dicke des durchstrahlten Stoffes.

Das Durchdringungsvermögen ist für Alphastrahlung am kleinsten und für Gammastrahlung am größten. Das Verhältnis beträgt zwischen den drei Arten von Strahlung:

α − S t r a h l u n g    :   β − S t r a h l u n g    :   γ − S t r a h l u n g            1            :          100           :       10 000

Umgekehrt ist das Absorptionsvermögen für Alphastrahlung am größten und für Gammastrahlung am kleinsten (Bild 4). In Luft beträgt die Reichweite von Alphastrahlung 4 cm - 6 cm, die von Betastrahlung mehrere Meter.
Besonders geeignet zur Abschirmung radioaktiver Strahlung ist Blei.

Radionuklide dürfen wegen möglicher Strahlenbelastungen nur in speziellen Behältern transportiert werden. Diese sind so aufgebaut, dass ein Großteil der Strahlung absorbiert wird.

Bei Kernreaktoren existieren mehrere Schutzbarrieren, die ein Austreten von radioaktiver Strahlung und auch von radioaktiven Stoffen unter allen Umständen verhindern sollen:

  • Metallische Hüllrohre um den Kernbrennstoff,
  • stählerner Reaktordruckbehälter mit Wandstärken bis zu 25 cm,
  • Betonabschirmung mit ca. 2 m dicken Wänden,
  • kugelförmiger Sicherheitsbehälter aus etwa 3 cm dicken Stahlplatten,
  • bis zu 2 m dicke Stahlbetonhülle.
  • Durchdringungsvermögen radioaktiver Strahlung

    Jens Prockat, Berlin

Lernhelfer (Duden Learnattack GmbH): "Eigenschaften radioaktiver Strahlung." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/schuelerlexikon/physik/artikel/eigenschaften-radioaktiver-strahlung (Abgerufen: 20. May 2025, 07:55 UTC)

Suche nach passenden Schlagwörtern

  • Ausbreitung radioaktiver Strahlung
  • Eigenschaften radioaktiver Strahlung
  • Radionuklide
  • Ablenkung
  • Abschirmung radioaktiver Strahlung
  • Durchdringungsvermögen
  • Energie der radioaktiven Strahlung
  • Ionisationsvermögen
  • Kernreaktoren
  • Simulation
  • Animation
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Anwendung von Radionukliden in Medizin und Technik

Radionuklide werden in verschiedenen Bereichen der Technik und der Medizin eingesetzt. Bei aller Vielfalt der Nutzungsmöglichkeiten lassen sich die meisten Anwendungen auf drei grundlegende Verfahren zurückführen: das Bestrahlungsverfahren, das Durchstrahlungsverfahren und das Markierungsverfahren. Diese drei grundlegenden Verfahren sind in dem Beitrag beschrieben.

James Chadwick

* 20.10.1891 in Manchester
† 23.07.1974 in Pinehurst bei Cambridge

JAMES CHADWICK war ein englischer Physiker. Er forschte gemeinsam mit RUTHERFORD über Radioaktivität und Kernumwandlung. 1932 entdeckte er das von RUTHERFORD bereits 1921 vorhergesagte Neutron. 1935 erhielt er dafür Nobelpreis für Physik. CHADWICK war an der Entwicklung der amerikanischen Atombombe beteiligt.

Zerfallsgesetz

Das Zerfallsgesetz gibt an, wie eine bestimmte Anzahl von Atomkernen eines radioaktiven Nuklids in Abhängigkeit von der Zeit zerfällt.
Es gilt:

N = N o ⋅ ( 1 2 ) t T 1 / 2 N Anzahl der noch nicht zerfallenen Atomkerne N o Anzahl der zum Zeitpunkt t = 0 vorhandenen nicht zerfallenen Atomkerne t Zeit T 1/2 Halbwertszeit

Henri Antoine Becquerel

* 15.12.1852 in Paris
† 25.08.1908 in Le Croisic

Er war ein französischer Physiker und Professor für Physik in Paris.
BECQUEREL entdeckte 1896 die natürliche Radioaktivität am Uran, fand den physikalischen Charakter von Betastrahlung heraus und erhielt 1903 gemeinsam mit dem Ehepaar MARIE und PIERRE CURIE für die Entdeckung der Radioaktivität den Nobelpreis für Physik.

Größen zur Beschreibung radioaktiver Strahlung

Radioaktive Strahlung kann durch verschiedene physikalische Größen beschrieben werden, wobei sich die Größen teilweise auf die Strahlungsquelle und teilweise auf die Körper beziehen, die radioaktiver Strahlung ausgesetzt sind. Die wichtigsten Größen sind die Aktivität, die Äquivalentdosis, die Energiedosis, die Energiedosisleistung und die Ionendosis.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025