Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Physik
  3. 4 Elektrizitätslehre
  4. 4.2 Der Gleichstromkreis
  5. 4.2.4 Elektrische Energie und Arbeit
  6. Elektrische Arbeit

Elektrische Arbeit

Die elektrische Arbeit gibt an, wie viel elektrische Energie in andere Energieformen umgewandelt wird.

Formelzeichen: W

Einheiten: eine Wattsekunde (1 W ⋅ s ), ein Joule (1 J)

Elektrische Arbeit muss man verrichten, um einen geladenen Körper in einem elektrischen Feld zu verschieben.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Die elektrische Arbeit gibt an, wie viel elektrische Energie in andere Energieformen umgewandelt wird.

Formelzeichen: W

Einheiten: eine Wattsekunde (1 W ⋅ s ), ein Joule (1 J)

Elektrische Arbeit muss man verrichten, um einen geladenen Körper in einem elektrischen Feld zu verschieben. Die Arbeit zur Bewegung eines solchen Körpers, ist gleich dem Produkt aus seiner Ladung und der Spannung zwischen dem Ausgangs- und dem Endpunkt:

W = Q ⋅ U

Für Berechnungen in einem Stromkreis verwendet man eine andere Gleichung. Die Arbeit im elektrischen Stromkreis ist gleich dem Produkt aus der elektrischen Leistung und der Zeit, während der die Leistung aufgewandt wird:

W = P ⋅ t

Beide Berechnungsgleichungen lassen sich ineinander überführen.

Allgemein gilt: Wendet man eine Kraft F auf, um einen Körper entlang des Weges s zu bewegen, so verrichtet man an diesem Körper Arbeit. Zwei ungleichnamig geladene Körper ziehen sich gegenseitig an. Will man sie auseinander bringen, so muss man eine Kraft aufbringen, um einen dieser Körper im elektrischen Feld des anderen Körpers zu verschieben. Bei dieser Verschiebung verrichtet man elektrische Arbeit.

Die elektrische Arbeit in einem Plattenkondensator

In einigen Fällen ist die Gleichung für die elektrische Arbeit besonders einfach herzuleiten. Dies ist möglich, wenn die Kraft und der Verschiebungsweg gleich gerichtet sind. Außerdem ist erforderlich, dass die elektrische Feldstärke auf dem gesamten Weg konstant und damit die Kraft ebenfalls konstant ist. Diese Bedingungen sind innerhalb eines Plattenkondensators sehr gut erfüllt. Es soll die elektrische Arbeit berechnet werden, die zu verrichten ist, um einen geladenen Probekörper zwischen zwei Platten eines Plattenkondensators, deren Abstand d beträgt, zu verschieben. Unter den genannten Voraussetzungen gilt für diese Arbeit:

W = F ⋅ s

Die Kraft auf einen Probekörper innerhalb eines Plattenkondensator ist das Produkt aus seiner elektrischen Ladung und der elektrischen Feldstärke im Kondensator:

F = Q ⋅ E

Daraus ergibt sich für die elektrische Arbeit:

W = Q ⋅ E ⋅ d

Für die elektrische Feldstärke E zwischen den Kondensatorplatten gilt:

E = U d (U Spannung zwischen den Platten)

Ersetzt man mithilfe dieser Gleichung die elektrische Feldstärke E in der Berechnungsformel für die elektrische Arbeit, so ergibt sich insgesamt:

W = Q ⋅ U

 

Die elektrische Arbeit in einem stromdurchflossenen Leiter

Man darf sich ein gerades Leiterstück wie einen Plattenkondensator mit winzigen Plattenflächen vorstellen. Da an einen Leitungsdraht eine elektrische Spannung angelegt wird und im Leiter elektrische Ladungen fließen - also "verschoben" werden - verrichtet die Spannungsquelle eine elektrische Arbeit an den Ladungsträgern. Diese Arbeit ist z.B. erforderlich, um den Leitungswiderstand zu überwinden. Da man in einem stromführenden Leiter nicht alle Ladungsträger einzeln "abzählen" kann, formt man für Arbeitsberechnungen in Stromkreisen die anhand des Plattenkondensators gewonnene Gleichung um.
Die durch ein Leiterstück fließende Gesamtladung ist das Produkt aus Stromstärke I und Zeit:

Q = I ⋅ t

Für die elektrische Arbeit gilt dann:

W = Q ⋅ U = I ⋅ t ⋅ U = P ⋅ t

Die elektrische Arbeit ist das Produkt aus elektrischer Leistung und Zeit. Diese Gleichung gilt unter der Voraussetzung, dass die im Stromkreis umgesetzte Leistung konstant ist.

Hinweis für Berechnungen der elektrischen Arbeit

Auf elektrischen Bauteilen sind im Regelfall entweder die Leistung oder Spannung und Stromstärke angegeben. So ist beispielsweise jede Glühlampe mit einer Leistungsangabe versehen. Möchte man die elektrische Arbeit einer Glühlampe berechnen, dann muss man diese Leistungsangabe nur noch mit ihrer Betriebsdauer multiplizieren. Eine 100 W-Lampe, die 12 Stunden in Betrieb war, hat demzufolge eine elektrische Arbeit von

W     =     P ⋅ t     =     100     W ⋅ 12     h     =     1200     W ⋅ h     =     1,2     kW ⋅ h

verrichtet.

Lernhelfer (Duden Learnattack GmbH): "Elektrische Arbeit." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/schuelerlexikon/physik/artikel/elektrische-arbeit (Abgerufen: 13. May 2025, 05:06 UTC)

Suche nach passenden Schlagwörtern

  • Berechnungstool
  • elektrisches Feld
  • Elektrische Arbeit
  • Plattenkondensator
  • Stromkreis
  • Kraft
  • elektrische Leistung
  • Verschiebungsweg
  • elektrische Feldstärke
  • stromdurchflossener Leiter
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Widerstände in Stromkreisen

Der elektrische Widerstand eines Bauelementes oder Gerätes gibt an, welche Spannung für einen elektrischen Strom der Stärke 1 A erforderlich ist. Er wird in der Einheit Ohm ( 1 Ω ) gemessen.
Befinden sich in einem Stromkreis mit einer elektrischen Quelle mehrere Bauelemente (Widerstände, Glühlampen, Spulen, ...), so können diese in Reihe oder parallel zueinander geschaltet sein. Der Gesamtwiderstand der Schaltung hängt von der Art der Schaltung und vom elektrischen Widerstand der betreffenden Bauelemente ab.

Elektrischer Widerstand

Der elektrische Widerstand eines Bauteils gibt an, wie stark der elektrische Strom in ihm behindert wird.

Formelzeichen:
Einheit:
R
ein Ohm (1 Ω )

Definiert ist der elektrische Widerstand als der Quotient aus elektrischer Spannung und elektrischer Stromstärke:

R = U I U Spannung am Bauteil I Stromstärke durch das Bauteil

Diese Gleichung wird auch als ohmsches Gesetz bezeichnet.

Arbeit und Energie im elektrischen Feld

Befinden sich elektrisch geladene Körper oder Teilchen im elektrischen Feld und sind sie frei beweglich, so wirkt auf sie eine Feldkraft, die Arbeit an diesen Körpern bzw. Teilchen verrichtet. Will man umgekehrt geladene Körper oder Teilchen im Feld bewegen, so muss Arbeit verrichtet werden, wenn die Bewegung entgegen der Feldkraft erfolgen soll. Die erforderliche Feldkraft kann bei einfachen Feldformen berechnet werden.
Wird an geladenen Körpern oder Teilchen mechanische Arbeit verrichtet, so ändert sich ihre Energie. Dabei gilt für den Zusammenhang zwischen Arbeit und Energie der allgemeine Zusammenhang W = Δ E .

Blitze und Blitzschutzanlagen

Blitze sind elektrische Entladungen zwischen Wolken bzw. zwischen einer Wolke und der Erdoberfläche. Die mittlere Stromstärke beträgt ca. 40.000 A bei einem Durchmesser der Blitze von 10 bis 20 cm, ihre Länge meist 2 bis 3 km und ihre Dauer weniger als 1 s. Weltweit werden 70 bis 100 Blitze in jeder Sekunde registriert.
Blitze können erhebliche Schäden hervorrufen. Um sich vor solchen Schäden zu schützen, werden in gefährdeten Gebieten an Gebäuden Blitzschutzanlagen angebracht. Vor Blitzen geschützt ist auch ein von Metall umgebener Raum, etwa eine Pkw-Karosserie. Sie wirkt wie ein FARADAY-Käfig. Elektronische Geräte oder Kabel werden durch eine metallische Ummantelung vor starken elektrischen Feldern abgeschirmt.

Charles Augustin de Coulomb

* 14.06.1736 in Angouleme (Südfrankreich)
† 23.08.1806 in Paris

COULOMB war französischer Physiker, der sich große Verdienste um die Entwicklung der Elektrizitätslehre erworben hat. Er entdeckte u.a. das coulombsche Gesetz, das eine quantitative Aussage über die Kraftwirkung auf geladene Körper im elektrischen Feld gestattet. Damit und mit anderen Untersuchungen führte maßgeblich quantitative Betrachtungen in die Elektrizitätslehre ein und knüpfte damit an NEWTONs Vorgehen an.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025