Direkt zum Inhalt

455 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Natürliche Zahlen, Historisches

Unser dekadisches Positionssystem geht auf den indischen Kulturkreis zurück. Der große arabische Mathematiker AL-CHWARIZMI erklärte und verwendete im Jahr 820 in seinem Lehrbuch der Arithmetik neue indische Ziffern. Im 12. Jahrhundert wurde dieses Buch in Spanien durch ROBERT VON CHESTER übersetzt. Von da aus traten dann die sogenannten arabischen Ziffern ihren Siegeszug an.

Artikel lesen

Natürliche Zahlen, Rechnen

Die Addition und ihre Umkehrung, die Subtraktion sowie die Multiplikation und ihre Umkehrung, die Division, sind die sogenannten vier Grundrechenarten.
Dabei sind Addition und Subtraktion die Rechenarten erster Stufe, Multiplikation und Division sind die Rechenarten zweiter Stufe.
Das interaktive Rechenbeispiel umfasst die Grundrechenarten für zwei und mehr natürliche Zahlen. In allen Beispielen können die gegebenen Ausgangswerte durch beliebige eigene Werte ersetzt werden, man erhält jeweils das neue Resultat.

Artikel lesen

Natürliche Zahlen, Unendlichkeit


In der Menge ℕ der natürlichen Zahlen hat jede Zahl n einen (unmittelbaren) Nachfolger n + 1. Fängt man bei 1 an zu zählen, so kommt man nie zu einem Ende, es gibt unendlich viele natürliche Zahlen. Man sagt auch: Die Menge ℕ der natürlichen Zahlen ist unendlich.

Artikel lesen

Mathcad

Mathcad ist eine Kombination aus einer leistungsstarken Software für wissenschaftliche und technische Berechnungen und einem vollwertigen Textverarbeitungsprogramm.
Dadurch ist es möglich, Berechnungen und grafische Darstellungen mit erläuternden Textelementen oder importierten Objekten zu präsentationsreifen Dokumentationen zusammenzufügen.
Die Besonderheit von Mathcad besteht darin, dass die Rechnungen und Diagramme dank eines integrierten Computeralgebrasystems dynamisch reagieren: Werden Eingabewerte oder Gleichungen geändert, berechnet Mathcad sofort neu und aktualisiert Ergebnisse und Diagramme.
Die beschriebenen Arbeitsschritte können in den interaktiven Beispielen mit veränderbaren Zahlenwerten nachvollzogen werden.

Artikel lesen

Direkte Proportionalität

Bewegt sich ein Fahrzeug mit gleichbleibender Geschwindigkeit v = 90 km/h (also v = 1,5 km/min) längs eines geradlinigen Weges, so legt es nach den Gesetzen der Physik in der Zeit t die Strecke
s = 1,5  t (t in Minuten, s in Kilometer) zurück.
Durch die Gleichung s = 1,5  t wird jedem Wert von t eindeutig ein Wert von s zugeordnet – es handelt sich bei diesem Zusammenhang also um eine Funktion s = f  ( t ) .

Seitennummerierung

  • Previous Page
  • Seite 14
  • Seite 15
  • Seite 16
  • Seite 17
  • Seite 18
  • Aktuelle Seite 19

455 Suchergebnisse

Fächer
  • Mathematik (455)
Klassen
  • 5. Klasse (455)
  • 6. Klasse (455)
  • 7. Klasse (455)
  • 8. Klasse (455)
  • 9. Klasse (455)
  • 10. Klasse (455)
  • Oberstufe/Abitur (429)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025