Direkt zum Inhalt

3 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Beweise, Allgemeines

Man unterscheidet im Wesentlichen zwei Beweisverfahren, den direkten Beweis und den indirekten Beweis.
Jeder Beweis besteht aus drei Schritten, die schon von EUKLID so angegeben wurden, nämlich
Voraussetzung – Behauptung – Beweis(durchführung).
Wenn eine mathematische Aussage bewiesen werden soll, dann ist es günstig, diese Aussage in Form einer Implikation,
also in „wenn …, dann …“-(oder in „wenn … , so gilt …“-) Form anzugeben. Der auf „wenn“ folgende Satzteil enthält bei einer solchen Formulierung die Voraussetzung, der sich an „dann“ (bzw. „so gilt“) anschließende die Behauptung. Die Umkehrung eines Satzes lässt sich auf diese Weise ebenfalls leichter formulieren.

Artikel lesen

Beweisverfahren der vollständigen Induktion

Das Verfahren der vollständigen Induktion hängt eng zusammen mit der Menge der natürlichen Zahlen bzw. mit Teilmengen natürlicher Zahlen. Es ist immer dann anwendbar, wenn man auf Aussagen trifft, die für alle natürlichen Zahlen gelten, also die die folgende Struktur aufweisen:

  • Für alle natürlichen Zahlen n       ( m i t       n ≥ n 0 ) gilt H ( n ) .
Artikel lesen

Logische Operationen

Aus der Umgangssprache ist bekannt, dass einfache Sätze durch Bindewörter zu längeren Satzverbindungen zusammengesetzt werden können. So können Aussagen und Aussageformen verneint oder durch die Wörter „und“, „oder“, „entweder … oder“, „wenn …, dann (so) …“, „genau dann, wenn“ verknüpft werden.
Dabei entsteht eine neue Aussage oder Aussageform als Verbindung zweier anderer Aussagen oder Aussageformen.

3 Suchergebnisse

Fächer
  • Mathematik (3)
Klassen
  • 5. Klasse (2)
  • 6. Klasse (2)
  • 7. Klasse (2)
  • 8. Klasse (2)
  • 9. Klasse (2)
  • 10. Klasse (2)
  • Oberstufe/Abitur (1)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025