Direkt zum Inhalt

5 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Zahlenkongruenzen

Zwei Zahlen a 1 und a 2 heißen kongruent nach dem Modul b (modulo b), wenn sie bei Division durch b den gleichen Rest lassen, also zur gleichen Restklasse modulo b gehören.
Man schreibt: a 1 ≡ a 2 mod b

Artikel lesen

Kongruenz von Dreiecken

Zwei Dreiecke sind zueinander kongruent, wenn es eine Bewegung gibt, die ein Dreieck auf das andere abbildet. Die beiden Dreiecke stimmen dann in allen sechs Bestimmungsstücken oder Maßen überein. Die Konstruktion eines Dreiecks ist möglich, wenn drei voneinander unabhängige Bestimmungsstücke gegeben sind. Daher wird auch bei der Betrachtung der Kongruenz von Dreiecken von drei Seiten oder Winkeln ausgegangen.

Artikel lesen

Dreieckskonstruktion

Die Konstruktion von Dreiecken ist anhand sogenannter Bestimmungsstücke mithilfe von Zirkel und Lineal durchführbar. Man unterteilt die Dreieckskonstruktionen in Konstruktionen aus Seiten und Winkeln (Grundkonstruktionen) und in Konstruktionen, bei denen auch weitere Bestimmungsstücke wie Höhen, Winkelhalbierende gegeben sind.

Artikel lesen

Grundbegriffe der euklidischen Geometrie

Im Axiomensystem der ebenen euklidischen Geometrie ist es gebräuchlich, die Kongruenzaxiome durch Axiome der Bewegung zu ersetzen. Bei der Betrachtung der Begriffe Bewegung und Kongruenz sind prinzipiell zwei Wege möglich.

Artikel lesen

Diophantische Gleichungen

Eine Gleichung der Form a x + b y = c mit ganzzahligen Koeffizienten a, b und c, für die ganze Zahlen x und y als Lösungen gesucht sind, heißt eine (lineare) diophantische Gleichung in zwei Unbekannten.
Diophantische Gleichungen können gelöst werden durch systematisches Probieren, mit der Methode der korrespondieren Kongruenzen, mittels formaler Bruchschreibweise sowie mithilfe des euklidischen Algorithmus.

5 Suchergebnisse

Fächer
  • Mathematik (5)
Klassen
  • 5. Klasse (4)
  • 6. Klasse (4)
  • 7. Klasse (4)
  • 8. Klasse (4)
  • 9. Klasse (4)
  • 10. Klasse (4)
  • Oberstufe/Abitur (1)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025