Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Mathematik
  3. 2 Grundbegriffe der Mathematik
  4. 2.1 Aussagen
  5. 2.1.6 Sätze und Beweise
  6. Grundbegriffe der euklidischen Geometrie

Grundbegriffe der euklidischen Geometrie

Im Axiomensystem der ebenen euklidischen Geometrie ist es gebräuchlich, die Kongruenzaxiome durch Axiome der Bewegung zu ersetzen. Bei der Betrachtung der Begriffe Bewegung und Kongruenz sind prinzipiell zwei Wege möglich.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Im Axiomensystem der ebenen euklidischen Geometrie ist es gebräuchlich, die Kongruenzaxiome durch Axiome der Bewegung zu ersetzen. Bei der Betrachtung der Begriffe Bewegung und Kongruenz sind prinzipiell zwei Wege möglich:

(1) Geht man vom Begriff der Kongruenz aus, wird die Relation „… ist kongruent zu …“ als Grundrelation im Einklang mit der anschaulich gegebenen Relation „… ist deckungsgleich zu …“ vorausgesetzt. Zueinander kongruente Figuren werden untersucht und es werden jene Abbildungen betrachtet, die eine Figur in eine andere zu ihr kongruente Figur überführen. Dabei soll das Bild einer ebenen Figur immer die gleiche Form und außerdem die gleiche Größe wie die Figur selbst haben. Bewegungen (Kongruenzabbildungen) werden dann als Abbildungen definiert, bei denen jede ebene Figur auf eine zu ihr kongruente Figur abgebildet wird.

(2) Wird der Begriff Bewegung als Grundbegriff verwendet, werden Eigenschaften von Bewegungen mit Axiomen vorausgesetzt. Spiegelung, Drehung, Verschiebung werden als spezielle Bewegungen definiert. Figuren werden danach untersucht, ob sie sich mit einer Bewegung ineinander überführen lassen. Die Relation „… ist kongruent zu …“ kann so definiert werden, dass zwei Figuren genau dann kongruent sind, wenn es eine Bewegung gibt, die die eine Figur auf die andere abbildet (kongruent lat., von congruentia – Übereinstimmung). Die Betrachtung von Klassen kongruenter Figuren führt zu Begriffen wie Streckenlänge, Winkelgröße ….

Beide Vorgehensweisen sind möglich. In jedem Falle aber muss einer der Begriffe „Kongruenz“ oder „Bewegung“ als Grundbegriff vorausgesetzt werden.

Lernhelfer (Duden Learnattack GmbH): "Grundbegriffe der euklidischen Geometrie." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/schuelerlexikon/mathematik/artikel/grundbegriffe-der-euklidischen-geometrie (Abgerufen: 20. May 2025, 15:22 UTC)

Suche nach passenden Schlagwörtern

  • Axiom
  • widerspruchsfreies Axiomensystem
  • Unabhängigkeit
  • euklidische Geometrie
  • Kongruenz
  • Axiomensystem
  • Bewegung
  • Hilbert
  • euklid-hilbertsche Geometrie
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Nikolai Iwanowitsch Lobatschewski

* 20. November 1792 Nishni-Nowgorod
† 12. Februar 1856 Kasan

NIKOLAI IWANOWITSCH LOBATSCHEWSKI gilt neben dem Ungarn JANOS BOLYAI als Begründer der nichteuklidischen Geometrie.
Ausgehend von der Negation des euklidischen Parallelenaxioms gelangte er zur hyperbolischen Geometrie, die heute nach ihm auch lobatschewskische Geometrie genannt wird.

Zur Geschichte des euklidischen Parallelenaxioms

In seinem Hauptwerk „Die Elemente“ legt EUKLID VON ALEXANDRIA (etwa 365 bis etwa 300 v.Chr.) einen systematischen Aufbau der Geometrie vor. Dabei spielt das sogenannte Parallelenaxiom eine besondere Rolle.
Zum Ende des 18. Jahrhunderts setzte sich immer mehr die Erkenntnis durch, dass das Parallelenaxiom nicht aus den anderen Axiomen EUKLIDS ableitbar und damit für den Aufbau der euklidischen Geometrie unverzichtbar ist.
Ausgehend von der Negation des Parallelenaxioms gelang es, völlig neue und in sich widerspruchsfreie Geometrien aufzubauen. Der russische Mathematiker LOBATSCHEWSKI und der Ungar JANOS BOLAYI entdeckten unabhängig voneinander zunächst die hyperbolische Geometrie, BERNHARD RIEMANN entwickelte später die elliptische Geometrie.
Speziell gehört es heute zu den aktuellen Fragen der Physik, welche der Geometrien das Universum im Großen am besten beschreibt. Ist es also elliptisch (sphärisch), euklidisch (eben) oder hyperbolisch?

Diophantische Gleichungen

Eine Gleichung der Form a x + b y = c mit ganzzahligen Koeffizienten a, b und c, für die ganze Zahlen x und y als Lösungen gesucht sind, heißt eine (lineare) diophantische Gleichung in zwei Unbekannten.
Diophantische Gleichungen können gelöst werden durch systematisches Probieren, mit der Methode der korrespondieren Kongruenzen, mittels formaler Bruchschreibweise sowie mithilfe des euklidischen Algorithmus.

Heron von Alexandria

HERON VON ALEXANDRIA hat etwa in der zweiten Hälfte des 1.Jahrhunderts gelebt und stammt vermutlich aus Ägypten. Seine Lebensdaten werden in den einzelnen Quellen unterschiedlich angegeben.
HERON war ein äußerst vielseitiger Mathematiker und Naturforscher.
Von seinen Werken war besonders die „Geometrica“, eine Zusammenstellung von Formeln und Aufgaben, populär.
Intensiv beschäftigte er sich auch mit Problemen der Mechanik und Optik.

Zur Geschichte der Zahlen

Unser dekadisches Positionssystem geht auf den indischen Kulturkreis zurück. Der arabische Mathematiker AL-CHWARIZMI erklärte und verwendete im Jahre 820 in seinem Lehrbuch der Arithmetik neue indische Ziffern. Im 12. Jahrhundert wurde dieses Buch in Spanien durch ROBERT VON CHESTER übersetzt. Von da aus traten die sogenannten arabischen Ziffern ihren Siegeszug an.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025