Direkt zum Inhalt

228 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Selen

Selen ist ein dem Schwefel ähnliches Element der 6. Hauptgruppe das in verschiedenen Modifikationen vorkommt, von denen das graue Selen die thermodynamisch stabilste Modifikation ist. Gewonnen wird Selen, das in seinen Verbindungen hauptsächlich in den Oxidationsstufen -II, IV und VI auftritt, aus den Anodenschlämmen der Kupferraffination. Es dient u. a. zur Herstellung von Fotoelementen, als Legierungsbestandteil (<0,25 %) und als Entfärbungsmittel in der Glasindustrie.

Artikel lesen

Silber

Silber, ein sogenanntes Münzmetall, ist ein glänzendes, Wärme und Elektrizität gut leitendes Element der 1. Nebengruppe. Gewonnen wird Silber meist aus Kupfer- und Bleierzen, die bis zu 1,2 % Ag enthalten. Reine Silbererze werden der Cyanidlaugerei unterworfen. Das Rohsilber wird durch Elektrolyse in Feinsilber überführt. Nichtoxidierende Säuren und Luft greifen es nicht an. In seinen Verbindungen liegt es überwiegend als Ag+-Ion vor. Silberschmuck und -münzen enthalten 10-20 % Kupfer. Zum Versilbern wird das Metall katodisch aus einer K[Ag(CN)2]-Lösung abgeschieden. Größere Mengen Silbersalze werden in der Fotoindustrie verwendet.

Artikel lesen

Stickstoff

Stickstoff ist ein reaktionsträges Nichtmetall, das bei Normalbedingungen in Form von Bild-Molekülen vorliegt. Es ist in der uns umgebenden Luft zu 78 Vol-% enthalten.
Vom Stickstoff leiten sich einige technisch sehr wichtige Verbindungen wie Ammoniak, Bild, und Salpetersäure, Bild, ab. Da Stickstoff Verbindungen mit den Oxidationszahlen von -III bis +V bilden kann, ist seine Chemie sehr vielfältig.

Artikel lesen

Strontium

Strontium ist ein unedles, leichtes Erdalkalimetall, dessen silbriger Glanz an der Luft schnell verblasst. Es kann durch Schmelzflusselektrolyse aus SrCl2 gewonnen werden und bildet Verbindungen mit SrBild-Ionen. Charakteristisch für Strontium und seine Verbindungen ist die rote Flammenfärbung. Verwendet wird Strontium als Legierungs- und Gettermetall zum Binden von Resten von Luft in Hochvakuumröhren.

Artikel lesen

Tantal

Tantal ist ein hochschmelzendes, dehnbares, luftbeständiges Metall der 5. Nebengruppe, das erst bei höheren Temperaturen mit Sauerstoff zu Ta2OBild oder mit Chlor zu TaClBild reagiert. Die Oxidationsstufe +V ist die beständigste. Das aus dem Oxid mit Kohlenstoff gewinnbare Metall wird zur Herstellung von Spateln, Schalen, Kesselauskleidungen sowie für medizinische Instrumente (Prothesen, Nägel) genutzt.

Artikel lesen

Technetium

Technetium ist ein silberglänzendes, radioaktives Schwermetall der 7. Nebengruppe, das nur künstlich hergestellt werden kann. Die häufigsten Oxidationsstufen in den Verbindungen sind +IV (z. B. TcO2) und +VII (z. B. NaTcO4). Bei der Spaltung von 235U in Kernreaktoren fällt BildTc in Kilogramm-Mengen an. Nach aufwendiger Abtrennung kann durch katodische Reduktion von TcOBild-Lösungen das Metall hergestellt werden. Das von Mendeleew vorausgesagte Element dient u. a. zur Herstellung von Radiopharmazeutika.

Artikel lesen

Tellur

Tellur ist ein seltenes, metallisch-glänzendes Element der 6. Hauptgruppe. Bei höheren Temperaturen ist es reaktiv und reagiert mit Sauerstoff zu TeO2 oder mit Chlor zu TeCl4. Die Oxidationsstufe +VI ist weniger stabil. Der Anodenschlamm der Kupferraffination enthält Telluride (z. B. Cu2Te), aus denen Tellur gewonnen wird. Zahlreiche Legierungen enthalten Tellur (<1 %) zur Verbesserung der Korrosionsbeständigkeit und der mechanischen Eigenschaften.

Artikel lesen

Terbium

Terbium, das 8. Element der Gruppe der Lanthanoide, tritt in der Natur nur als Nuklid 159Tb auf, es ist also ein Reinelement. Das silbergraue Schwermetall ist schmiedbar und weitgehend luftbeständig. In verdünnten Säuren ist es unter Bildung farbloser Tb(III)-Ionen löslich. Entsprechend der Valenzelektronenkonfiguration, [Xe] 4f9 6s2, können auch in Wasser nicht beständige Tb(IV)-Verbindungen synthetisiert werden. Aus dem Oxid, Tb2O3, kann auf metallothermischem Weg das Metall gewonnen werden. Es ist technisch zzt. ohne große Bedeutung.

Artikel lesen

Thallium

Thallium ist ein bläulich schimmerndes, weiches, unedles Schwermetall, das chemisch und physikalisch dem Blei ähnlich ist. Thalliumverbindungen sind toxisch. Sie erzeugen eine grüne Flammenfärbung. Als Element der 3. Hauptgruppe bildet es Verbindungen mit den Oxidationsstufen +III (TlCl3) und +I (TlCl), wobei letztere stabiler sind. Thallium kommt in der Natur vergesellschaftet mit Blei und Zink vor und wird bei deren Gewinnung als Nebenprodukt, z. B. durch Elektrolyse von
Tl2SO4-Lösungen, gewonnen. Verwendung finden das Metall und seine Verbindungen in Kältethermometern (Tl-Hg-Legierung) und zur Herstellung von IR-durchlässigen Optiken (TlBr).

Artikel lesen

Thorium

Thorium, das 1. Element der Reihe der Actinoide, ist ein radioaktives, silberweißes, dehnbares Schwermetall. Es verbrennt im Sauerstoffstrom zu ThO2. Es löst sich langsam in verdünnten Säuren. Von Wasser wird es nicht angegriffen. Die wichtigste Oxidationsstufe ist IV. Monazitsand enthält bis zu 12 % ThO2. Aus ihm wird Thorium abgetrennt, in KThF5 überführt und daraus elektrochemisch abgeschieden. In Hochtemperatur-Reaktoren werden ThO2 und ThC2 eingesetzt. Thorium ist ein Legierungsbestandteil für Cu-Ag-Legierungen (elektrische Kontakte).

Artikel lesen

Thulium

Thulium, das 12. Element der Gruppe der Lanthanoide, ist ein weiches, silbrig glänzendes, seltenes Schwermetall. Es lässt sich mit dem Messer schneiden. Thulium wird von trockener Luft nicht angegriffen. Es bildet Verbindungen mit der Oxidationsstufe III. Das Metall löst sich in verdünnten Säuren unter Bildung grüner Tm3+-Ionen. Es sind auch einige Tm(II)-Verbindungen bekannt. Durch Metallothermie (TmF3 / Ca) lässt sich das Metall herstellen, das gegenwärtig nur geringe technische Bedeutung hat (z. B. 170Tm als γ-Strahler zur Werkstoffprüfung).

Artikel lesen

Element 116, Ununhexium


Das 116. Element des PSE, dessen Arbeitsname bis zur Festlegung des endgültigen Elementnamens durch die IUPAC Ununhexium ist, wurde im Jahr 2000 im Kernforschungszentrum Dubna (Russland) durch die Fusion von Calcium- und Curium-Kernen künstlich erzeugt. Es liegen noch keine Kenntnisse über Eigenschaften des Elements und seiner Verbindungen vor.

Artikel lesen

Element 118, Ununoctium


Das 118. Element des PSE, dessen Arbeitsname bis zur Festlegung des endgültigen Elementnamens durch die IUPAC Ununoctium ist, wurde im Jahr 2002 erstmals im Kernforschungszentrum Dubna (Russland) durch die Fusion von Calcium- und Californium-Kernen künstlich erzeugt. Es liegen noch keine Kenntnisse über Eigenschaften des Elements und seiner Verbindungen vor.

Artikel lesen

Element 115, Ununpentium (Uup)


Das Element Uup wurde im Jahr 2003 in Dubna von einem russisch-amerikanischen Forschungsteam beim Beschuss von Am mit Ca-Kernen beobachtet.

Artikel lesen

Element 114, Ununquandium (Uuq)


Das 114. Element, Eka-Blei, ist ein Element der 14. Gruppe (4. Hauptgruppe) des PSE. Von ihm erwarten theoretische Chemiker und Physiker wieder Isotope mit längerer Halbwertszeit, eine sogenannte Insel der Stabilität. Im Jahre 1999 berichteten Wissenschaftler des vereinigten internationalen Kernforschungszentrums in Dubna (Russland) unter J. OGANESSIAN von der Darstellung einiger Atome 2 8 9Uuq bzw. 2 8 7Uuq.

Artikel lesen

Element 117, Ununseptium


Das 117. Element des PSE, dessen Arbeitsname bis zur Festlegung des endgültigen Elementnamens durch die IUPAC Ununseptium ist, wurde im Jahr 2010 im Kernforschungszentrum Dubna (Russland) durch die Fusion von Calcium- und Berkelium-Kernen künstlich erzeugt. Es liegen noch keine Kenntnisse über Eigenschaften des Elements und seiner Verbindungen vor.

Artikel lesen

Element 113, Ununtrium (Uut)


Das 113. Element trägt den Arbeitsnamen Ununtrium und ist ein Element der 13. Gruppe (3. Hauptgruppe). Über die Darstellung einiger Atome wurde 2003 aus Dubna (J. OGANESSIAN) und 2004 aus Japan (K. MORITA) berichtet.

Artikel lesen

Nebengruppenelemente

Zwischen dem Atombau und der Stellung des jeweiligen Elements im Periodensystem besteht ein enger Zusammenhang. Bei den Hauptgruppenelementen bis zur Ordnungszahl 20 kann man mit einem Blick den Bau der Atome ablesen. Danach wird der Atombau etwas komplizierter, besonders bei den Nebengruppenelementen.

Artikel lesen

PSE

Das Periodensystem der Elemente ist heute ein ganz wichtiges Arbeitsmittel für jeden, der sich mit der Chemie beschäftigt. In ihm sind die Elemente in Abhängigkeit von ihrem Bau angeordnet. Daher kann man aus dem Periodensystem wesentliche Fakten zum Atombau der Elemente und daraus resultierend über die Eigenschaften der Elementsubstanzen ablesen.
An der Entwicklung des Periodensystems der Elemente haben viele bekannte Wissenschaftler mitgearbeitet. Klicken Sie auf das nebenstehende Bild, um ein Vollbild des Periodensystems zu sehen. Dort können Sie für jedes Element zahlreiche Informationen abrufen. Durch Klicken auf die einzelnen Elementsymbole erhalten Sie Informationen zu wichtigen Eigenschaften der Elektronenkonfiguration, Vorkommen, Verbindungen und den wichtigsten Anwendungen. Außerdem sind jeweils die wichtigsten Stoffkonstanten und die Häufigkeit des Vorkommens in der Natur angegeben. Dazu gehört auch eine Übersicht über die häufigsten Isotope der einzelnen Elemente und einen kurzen historischen Abriss über die Entdeckung des jeweiligen Elements.

Artikel lesen

Roentgenium

Roentgenium ist ein künstliches Element mit der Ordnungszahl 111, das im Jahr 1994 von einer Gruppe von Wissenschaftlern unter der Leitung von S. HOFMANN in Darmstadt durch Beschuss von 2 0 9Bi mit 6 4Ni-Kernen synthetisiert wurde. Gemäß der Elektronenkonfiguration [Rn] 5f1 46d1 07s1 ist das 111. Element ein schweres Homologes des Elements Gold, ein Element der 11. Gruppe (1. Nebengruppe). Genauere Kenntnisse über die Eigenschaften des Elements und seiner Verbindungen liegen noch nicht vor.

Artikel lesen

Actinium

Actinium ist ein radioaktives Schwermetall der 3. Nebengruppe. Alle Isotope sind radioaktiv. Das langlebigste Nuklid 227Ac hat eine Halbwertszeit von 21,8 Jahren. Gewonnen werden kann Actinium aus Kernabbränden oder durch Bestrahlung von 226Ra mit Neutronen, wobei das entstehende 227Ra unter ß-Strahlung in 227Ac zerfällt. Das silberweiße Metall lässt sich in Mengen von über 10 Gramm, z. B. durch Reduktion von AcFBild mit Kalium herstellen. Chemisch ähnelt das Actinium dem Lanthan und bildet Verbindungen mit der Oxidationszahl III.

Artikel lesen

Americium


Americium ist ein reaktionsfähiges, silbrig glänzendes, dehnbares Schwermetall. Es ist das 6. Element der Actinoide. Das Metall löst sich leicht in Säuren und bildet überwiegend Verbindungen mit der Oxidationsstufe III. Aber auch rotgelbe Am4 +- Ionen, die in wässriger Lösung nicht beständig sind, und gelbe AmO2 +- Ionen sind bekannt. Americium wird in Kilogramm-Mengen bei Kernreaktionen aus 241Pu gebildet. Einige Verbindungen dienen Spezialzwecken in der Technik und der Medizin.

Artikel lesen

Antimon


Antimon bildet neben einer instabilen schwarzen Modifikation eine stabilere graue metallische Modifikation. Diese ist silberweiß, glänzend und spröde. Das wichtigste Mineral ist der Grauspießglanz, Sb2S3. Reines Antimon wird durch Reduktion von SbCl3 mit Wasserstoff gewonnen. Das Element bildet Verbindungen überwiegend mit den Oxidationsstufen +III und +V. Antimon ist ein wichtiges Legierungs- (Letternmetall, Schrot) und Lagermetall. Wichtige Halbleiter enthalten Antimon, z. B. AlSb und InSb.

Artikel lesen

Arsen


Arsen (5. Hauptgruppe) tritt in mehreren Modifikationen auf. Das beständige graue Arsen ist spröde und metallisch glänzend. Gelbes Arsen zeigt nichtmetallische Eigenschaften. Die Verbindungen leiten sich von den Oxidationsstufen III und V ab, aber auch Arsenide (z. B. Na3As) sind bekannt. Meist wird Arsen aus den bei den Verhüttungsprozessen anfallenden As2O3 durch Reduktion mit Kohle gewonnen. Arsenverbindungen sind giftig. Das Element wird als Legierungsbestandteil, für die Herstellung von Halbleitern und einige Verbindungen werden in begrenztem Umfang bei der Schädlingsbekämpfung eingesetzt.

Artikel lesen

Astat


Astat ist ein radioaktives Element der 7. Hauptgruppe, dessen Eigenschaften noch nicht vollständig bekannt sind. Das langlebigste Isotop hat eine Halbwertszeit von 8,3 Stunden. Es ist sublimierbar und bildet At2-Moleküle. Verbindungen sind mit den Oxidationszahlen -I (Astatide, AtBild), +I (AtOBild) und +V (AtO3 Bild) bekannt. Astat kann in Mikrogrammmengen durch Beschuss von Bismut mit α-Teilchen gewonnen werden. Verwendet werden Astat-Verbindungen in der Nuklearmedizin.

Seitennummerierung

  • Previous Page
  • Seite 1
  • Seite 2
  • Aktuelle Seite 3
  • Seite 4
  • Seite 5
  • Seite 6
  • Next Page

228 Suchergebnisse

Fächer
  • Biologie (3)
  • Chemie (222)
  • Mathematik (3)
Klassen
  • 5. Klasse (113)
  • 6. Klasse (113)
  • 7. Klasse (113)
  • 8. Klasse (113)
  • 9. Klasse (113)
  • 10. Klasse (113)
  • Oberstufe/Abitur (115)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025