Direkt zum Inhalt

3 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Gebrochenrationale Funktionen

Eine Funktion f, deren Funktionsterm ein Quotient zweier Polynome p ( x )  und  q ( x ) ist, heißt gebrochenrationale Funktion. Man unterscheidet zwischen echt und unecht gebrochenrationalen Funktionen.
Durch Polynomdivision kann der Funktionsterm einer unecht gebrochenrationalen Funktion in einen ganzrationalen und einen echt gebrochenrationalen Term zerlegt werden.

Artikel lesen

Nullstellen gebrochenrationaler Funktionen

Nullstellen einer gebrochenrationalen Funktion sind alle Nullstellen der ganzrationalen Zählerfunktion, die nicht gleichzeitig Nullstellen der Nennerfunktion sind. Damit ist das Bestimmen der Nullstellen gebrochenrationaler Funktionen auf die Nullstellenermittlung ganzrationaler Funktionen zurückgeführt.

Artikel lesen

Nullstellen trigonometrischer Funktionen

Viele periodische Vorgänge lassen sich durch Funktionen der Form f ( x ) = a ⋅ sin ( b ⋅ ( x − c ) ) beschreiben. Deren Graphen entstehen aus dem Graphen der Sinusfunktion durch Streckung (Stauchung) in Richtung der Koordinatenachsen und Verschiebung in Richtung der x-Achse, woraus sich Schlussfolgerungen für die Nullstellen ziehen lassen.
Für mit anderen Funktionen verkettete Sinus- und Kosinusfunktionen führt das Bestimmen der Nullstellen auf das Lösen goniometrischer Gleichungen.

3 Suchergebnisse

Fächer
  • Mathematik (3)
Klassen
  • Oberstufe/Abitur (3)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025