Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Mathematik Abitur
  3. 3 Funktionen und ihre Eigenschaften
  4. 3.3 Eigenschaften von Funktionen
  5. 3.3.5 Nullstellen
  6. Nullstellen gebrochenrationaler Funktionen

Nullstellen gebrochenrationaler Funktionen

Nullstellen einer gebrochenrationalen Funktion sind alle Nullstellen der ganzrationalen Zählerfunktion, die nicht gleichzeitig Nullstellen der Nennerfunktion sind. Damit ist das Bestimmen der Nullstellen gebrochenrationaler Funktionen auf die Nullstellenermittlung ganzrationaler Funktionen zurückgeführt.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Allgemein versteht man unter einer Nullstelle einer Funktion f diejenige Zahl x 0 ∈ D f , für die f ( x 0 ) = 0 gilt.
Ist bei einer gebrochenrationalen f ( x ) = p ( x ) q ( x ) an einer Stelle x 0 ∈ D f die Zählerfunktion gleich null, d.h. gilt p ( x 0 ) = 0 , so ist x 0 eine Nullstelle von f ( x ) , wenn gleichzeitig q ( x 0 ) ≠ 0 gilt.

  • Beispiel 1: Gegeben sei die Funktion f ( x ) = x − 2 x + 1 mit x ≠ − 1 (Definitionslücke). Es sind die Nullstellen zu bestimmen.

Zur Ermittlung der Nullstellen von f setzt man die Zählerfunktion gleich null und löst die entstehende Gleichung, also:
  x − 2 = 0 ⇒ x = 2
Da für die Nennerfunktion q ( 2 ) = 3 ≠ 0 , ist x = 2 Nullstelle von f .

  • Graph der Funktion des Beispiels 1
  • Beispiel 2: Von der Funktion f ( x ) = x 2 + x − 6 x 2 − 5 x + 6 sind der Definitionsbereich und die Nullstellen zu bestimmen.

Die Funktion f hat an den Stellen x 1 = 3  und  x 2 = 2  Definitionslücken, da die Nennerfunktion für diese Werte gleich null ist.
Damit ist der Definitionsbereich D f = ℝ \ { 3 ;     2 } .
Zur Berechnung der Nullstellen setzt man die Zählerfunktion gleich null und löst die folgende Gleichung:
  x 2 + x − 6 = 0
Diese hat die Lösungen x 3 = 2  und  x 4 = −   3 .
An der Stelle x 4 = −   3 liegt eine Nullstelle vor, da −   3 ∈ D f .
Da die Funktion f für x 3 = 2 nicht definiert ist, existiert dort auch keine Nullstelle. Das bestätigt auch die grafische Darstellung der Funktion:

  • Graph der Funktion des Beispiels 2
  • Beispiel 3: Die Funktion f ( x ) = x 2 + 3 1 + 4 x 2 ist auf Nullstellen zu untersuchen.

Die Funktion ist für alle x ∈ ℝ definiert. Nullsetzen des Zählers führt auf die Gleichung x 2 + 3 = 0 , die im Bereich der reellen Zahlen keine Lösungen besitzt. Die Funktion hat folglich keine Nullstellen.

  • Graph der Funktion des Beispiels 3

Zusammenfassung

Nullstellen einer gebrochenrationalen Funktion sind alle Nullstellen der ganzrationalen Zählerfunktion, die nicht gleichzeitig Nullstellen der Nennerfunktion sind. Damit ist das Bestimmen der Nullstellen gebrochenrationaler Funktionen auf die Nullstellenermittlung ganzrationaler Funktionen zurückgeführt.

Lernhelfer (Duden Learnattack GmbH): "Nullstellen gebrochenrationaler Funktionen." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/schuelerlexikon/mathematik-abitur/artikel/nullstellen-gebrochenrationaler-funktionen (Abgerufen: 26. October 2025, 01:20 UTC)

Suche nach passenden Schlagwörtern

  • Berechnung
  • Definitionsbereich
  • Definitionslücken
  • Nennerfunktion
  • Mathcad
  • Graph
  • interaktives Rechenbeispiel
  • Zählerfunktion
  • ganzrationale Funktionen
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Grafisches Lösen von Gleichungen

Gleichungen, für die exakte Lösungsverfahren nicht bekannt oder zu zeitaufwendig sind, lassen sich oft mit hinreichender Genauigkeit grafisch lösen.

Dabei geht man von der zu lösenden Bestimmungsgleichung zur entsprechenden Funktionsgleichung über, stellt (unter Verwendung eines Taschenrechners) eine Wertetabelle auf und zeichnet den Graphen der Funktion.

Die Abszissen der Schnittpunkte des Funktionsgraphen mit der x-Achse, also die Nullstellen, sind die Lösungen der Gleichung. Man liest sie näherungsweise ab. Die Genauigkeit beim Ablesen kann verbessert werden, wenn die Funktion in einem immer engeren Intervall um die Nullstelle herum dargestellt wird.

Das Vorgehen beim grafischen Lösen von Gleichungen soll im Folgenden durch ein Beispiel verdeutlicht werden.

Nullstellen ganzrationaler Funktionen (dritten und höheren Grades)

Allgemein versteht man unter einer Nullstelle einer Funktion f diejenige Zahl x 0 ∈ D f , für die f ( x 0 ) = 0 gilt. Nullstellen zu berechnen heißt demnach, alle Lösungen der Gleichung f ( x ) = 0 zu ermitteln.
Diese kann man rechnerisch durch Anwenden der äquivalenten Umformungsregeln, Verwenden von Lösungsformeln u.a. sowie Anwenden von Näherungsverfahren  bestimmen.

Winkelfunktionen y = f(x) = a sin (bx + c)

Besonders bei der mathematischen Beschreibung von Schwingungsvorgängen wird häufig von Winkelfunktionen, speziell der Sinusfunktion mit Gleichungen der Form y = f ( x ) = a ⋅ sin ( b x + c ) Gebrauch gemacht.
Bezogen auf den Graphen von f nennt man deshalb a auch die Amplitude der Sinuskurve, b deren Frequenz und c ihre Phasenverschiebung.

Nullstellen linearer und quadratischer Funktionen

Eine lineare Funktion f mit f ( x ) = m x + n       ( mit       m ,   n ∈ ℝ ;       m ≠ 0 ) besitzt genau eine Nullstelle x 0 , sie berechnet sich nach x 0 = −   n m .
Eine quadratische Funktion f mit f ( x ) = a x 2 + b x + c hat maximal zwei Nullstellen. Diese ergeben sich als (mögliche) Lösungen der Gleichung a x 2 + b x + c = 0 .

Nullstellen trigonometrischer Funktionen

Viele periodische Vorgänge lassen sich durch Funktionen der Form f ( x ) = a ⋅ sin ( b ⋅ ( x − c ) ) beschreiben. Deren Graphen entstehen aus dem Graphen der Sinusfunktion durch Streckung (Stauchung) in Richtung der Koordinatenachsen und Verschiebung in Richtung der x-Achse, woraus sich Schlussfolgerungen für die Nullstellen ziehen lassen.
Für mit anderen Funktionen verkettete Sinus- und Kosinusfunktionen führt das Bestimmen der Nullstellen auf das Lösen goniometrischer Gleichungen.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025