Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Mathematik Abitur
  3. 14 Beschreibende und beurteilende Statistik
  4. 14.2 Beurteilende Statistik
  5. 14.2.2 Grundprobleme des Testens von Hypothesen
  6. Grundgesamtheiten und Stichproben

Grundgesamtheiten und Stichproben

In der Statistik werden statistische (Daten-)Mengen untersucht und dabei ein interessierender statistischer Zusammenhang durch eine Zufallsgröße, z.B. die Zufallsgröße X, beschrieben.

  • Definition: Statistische Mengen sind Gesamtheiten von Ereignissen, Objekten oder Individuen. Die Menge aller Ereignisse bzw. Objekte oder Individuen, die zu einem klar gekennzeichneten Merkmal (oder einer Merkmalsgruppe) gebildet werden kann, bezeichnet man als Grundgesamtheit, bei Individuen auch als Population.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Beispiele für Grundgesamtheiten (und sich darauf beziehende Zufallsgrößen) wären so die Menge

  1. aller wahlberechtigten Bürger eines Bundeslandes
    (Zufallsgröße X: Anzahl der Bürger, die Wähler einer
    bestimmten Partei sind);
  2. aller Bäume eines Waldgebietes
    (Zufallsgröße X: Anzahl der Bäume, die Schädigungen durch Umwelteinflüsse aufweisen);
  3. aller Artikel einer bestimmten Sorte aus der Tagesproduktion einer Firma
    (Zufallsgröße X: Anzahl der unbrauchbaren Artikel);
  4. aller Erdbeben im Zeitraum von 100 Jahren in einem bebenintensiven Gebiet
    (Zufallsgröße X: Anzahl der Beben ab einer bestimmten Stärke);
  5. aller Unfälle im Straßenverkehr innerhalb einer Stadt
    (Zufallsgröße X: Anzahl der betroffenen Fußgänger).

Bei statistischen Untersuchungen ist es im Allgemeinen aus praktisch-organisatorischen Gründen nicht möglich oder aus Kostengründen nicht erwünscht, eine interessierende Grundgesamtheit vollständig zu untersuchen. Man denke beispielsweise an

  1. Wahlprognosen, die selbstverständlich nicht die Wahl vorwegnehmen bzw. ersetzen können;
  2. Qualitätsprüfungen, die nicht zerstörungsfrei bzw. ohne Folgeschäden bleiben (wie Untersuchungen von Materialien auf Elastizität).

Aufgabe der Beurteilenden Statistik ist es deshalb vielmehr, aus Eigenschaften von Teilmengen einer Grundgesamtheit (wobei die Wahrscheinlichkeitsverteilung des statistisch interessierenden Merkmals in der Grundgesamtheit unbekannt ist) die Wahrscheinlichkeit für das Auftreten eines bestimmten statistisch interessierenden Merkmals in der Grundgesamtheit zu schätzen und die Signifikanz des Schätzwertes zu beurteilen.

  • Defínition: Eine aus einer Grundgesamtheit (im Allgemeinen zufällig – „auf gut Glück“) ausgewählte (Teil-)Menge mit n Elementen heißt Stichprobe.
    Die Elemente X 1 ,     X 2 ,     ...     ,     X n der Stichprobe sind Zahlenwerte der Zufallsgröße X. Die Anzahl n der Elemente gibt den Umfang der Stichprobe (kurz als Stichprobenumfang bezeichnet) an.
    Jedes einzelne Element der Stichprobe heißt Stichprobenwert.

Um aus Eigenschaften der Stichprobe mit einer gewissen Sicherheit auf Eigenschaften der Grundgesamtheit schließen zu können, muss die Stichprobe charakteristisch – man sagt repräsentativ – für die Grundgesamtheit sein.

Eine Stichprobe gilt als repräsentativ, wenn sie annähernd so wie die Grundgesamtheit zusammengesetzt und ihr Umfang hinreichend groß ist. Darüber hinaus müssen die interessierenden Eigenschaften der Elemente der Stichprobe quantifizierbar, also zahlenmäßig erfassbar und beschreibbar sein.

Das Erfassen und Beschreiben der Grundgesamtheit bzw. der Stichprobe übernimmt die Beschreibende Statistik. Die Untersuchung der Stichprobe mithilfe von Schätz- und Testverfahren (einschließlich Entscheidungen und Angaben zu deren Zuverlässigkeit) leistet die Beurteilende Statistik.

Der erste wichtige Schritt einer Untersuchung ist die genaue Festlegung bzw. Kennzeichnung der Grundgesamtheit.
Der zweite Schritt besteht in der Planung der Zusammensetzung der Stichprobe.

Um Repräsentativität zu erreichen, dürfen Zusammensetzung und Umfang der Stichprobe nicht dem Zufall überlassen bleiben; das Ermitteln ihrer einzelnen Elemente dagegen erfolgt zufällig. Für einen hinreichend großen Stichprobenumfang gibt der sogenannte Auswahlsatz a eine Orientierung. Es gilt:
Auswahlsatz a = U m f a n g       n       d e r       S t i c h p r o b e     U m f a n g       N       d e r       G r u n d g e s a m t h e i t · 100 %

Der Umfang der Grundgesamtheit N muss ggf. geschätzt werden.
Für den Auswahlsatz a existieren empirisch gewonnene Erfahrungswerte. Diese Werte variieren z.B. in Abhängigkeit von der Zusammensetzung einer Stichprobe sowie der Art des Sachgebietes der Grundgesamtheit. Als ein grober Richtwert kann a = 10 % angesehen werden.

In der statistischen Praxis sind allerdings sowohl erheblich kleinere a-Werte (z.B. a < 1 % bei Wahlprognosen) als auch erheblich größere Werte (z.B. a > 20 % bei Qualitätskontrollen) zu finden. Dies hat seinen Grund in entsprechenden jahrzehntelangen Erfahrungen (Wahlprognosen) oder ständig wechselnder Spezifik und daher fehlender Erfahrung (Qualitätskontrollen) bei der Zusammensetzung von Stichproben aus dem jeweiligen Sachgebiet.

Bei einer geeigneten Zusammensetzung der Stichprobe gilt: Je größer der Auswahlsatz, desto sicherer die Repräsentativität der Stichprobe.

Lernhelfer (Duden Learnattack GmbH): "Grundgesamtheiten und Stichproben." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/index.php/schuelerlexikon/mathematik-abitur/artikel/grundgesamtheiten-und-stichproben (Abgerufen: 20. May 2025, 16:21 UTC)

Suche nach passenden Schlagwörtern

  • Zufallsgröße
  • Population
  • Stichprobenwert
  • Grundgesamtheit
  • Stichprobe
  • Stichprobenumfang
  • statistische Menge
  • Repräsentativität
  • Auswahlsatz
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Alternativtests

Verteilungsannahmen (z.B. Hypothesen zu unbekannten Wahrscheinlichkeiten) über Merkmale einer zu untersuchenden Grundgesamtheit werden mithilfe statistischer Tests, sogenannten Signifikanztests, anhand konkreter Stichproben überprüft. Basis der Überprüfungen ist die Nullhypothese. Der mathematische Aufbau der Signifikanztests erfolgt so, dass genau zwei Prüfergebnisse möglich sind: Die Nullhypothese ist abzulehnen oder die Nullhypothese kann nicht abgelehnt werden.

Für den Fall, dass die Nullhypothese abzulehnen ist, legt im Allgemeinen die Alternativhypothese fest, wie das „Nichtgültigsein“ der Nullhypothese zu deuten ist. Sind in einem Test beide Hypothesen einfache Hypothesen, also durch jeweils genau einen konkreten Wert formuliert, so spricht man von einem besonderen Signifikanztest, dem Alternativtest, anderenfalls (nur) von einem (normalen) Signifikanztest.

Wegen der eindeutigen Festlegung beider Hypothesen lässt sich im ersten Fall für die Signifikanzbeurteilung sowohl der Fehler 1. Art als auch der Fehler 2. Art eindeutig berechnen.
Bei einem (normalen) Signifikanztest kann der Fehler 2. Art nicht eindeutig berechnet werden, da (zumindest) die Alternativhypothese nicht eindeutig (nicht durch genau einen Wert) festgelegt ist.

  • Definition: Ein statistischer Test auf signifikante Unterschiede (Signifikanztest), bei dem zwischen zwei einfachen Hypothesen alternativ (für den einen oder den anderen konkreten Wert) entschieden wird, heißt Alternativtest.

Boxplots

Unter Boxplots oder Kastenschaubildern versteht man eine Form der grafischen Darstellung von Häufigkeitsverteilungen, in der neben dem Median als Bezugspunkte außerdem der größte und der kleinste Ausprägungswert sowie die Quartile (Viertelwerte) vermerkt sind.

Die Boxplotdarstellung ist ein gutes Hilfsmittel für den Vergleich von Verteilungen, da man erkennt, welchen Bereich (welche Spannweite) die ermittelten Daten einnehmen, ob die Verteilung bezüglich des Medians symmetrisch, rechts- oder linksschief ist usw.

Grafische Darstellung von Daten

Für die grafische Veranschaulichung von Daten, die durch statistische Untersuchungen gewonnen wurden, nutzt man verschiedene Möglichkeiten, die in starkem Maße durch den Charakter der darzustellenden Daten (quantitative oder qualitative Merkmale, diskrete oder stetige quantitative Merkmale usw.) bestimmt werden.
Wichtige Darstellungsarten sind Stängel-Blatt-Diagramme, Stabdiagramme (auch Strecken- oder Balkendiagramme), Blockdiagramme (Streifendiagramme), Kreisdiagramme, Histogramme (Säulendiagramme) und Polygonzüge.

Häufigkeitsverteilungen, Darstellung

Hier kannst du dich selbst testen. So kannst du dich gezielt auf Prüfungen und Klausuren vorbereiten oder deine Lernerfolge kontrollieren.

Multiple-Choice-Test zum Thema "Mathematik - Darstellung von Häufigkeitsverteilungen".

Viel Spaß beim Beantworten der Fragen!

WISSENSTEST

Hypothesen und Entscheidungsfehler

Beurteilende Statistik setzt quantitatives Beschreiben von Grundgesamtheiten bzw. Stichproben voraus. Begründete Vermutungen über stochastische Eigenschaften von Grundgesamtheiten nennt man Hypothesen. Auf der Grundlage statistischer Tests wird entschieden, ob die zu überprüfende Hypothese abzulehnen (zu verwerfen) ist oder nicht.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025