Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Mathematik Abitur
  3. 6 Differenzialrechnung
  4. 6.2 Regeln zur Ableitung von Funktionen
  5. 6.2.1 Konstanten-, Potenz- und Faktorregel
  6. Konstantenregel der Differenzialrechnung

Konstantenregel der Differenzialrechnung

Wir vermuten das Folgende: Eine konstante Funktion f ( x ) = c       ( c ∈ ℝ ,       a b e r       f e s t ) besitzt für alle x ∈ ℝ die Ableitung f ′ ( x ) = 0.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Wir betrachten die konstante Funktion f ( x ) = c für alle x ∈ ℝ .
Ihr Graph ist eine Parallele zur x-Achse.

Zum Nachweis dieser Vermutung wird der Differenzenquotient für eine beliebige Stelle x 0 ∈ D f gebildet:
  d ( h ) = f ( x 0 + h ) − f ( x ) h = c − c h = 0 h = 0       ( f ü r       h ≠ 0 )

Also gilt auch:

  f ′ ( x 0 ) = lim h → 0 0 = 0

Damit gilt allgemein die Konstantenregel der Differenzialrechnung:

  • Eine konstante Funktion f ( x ) = c       ( c ∈ ℝ ,       a b e r       f e s t ) besitzt für alle x ∈ ℝ die Ableitung f ′ ( x ) = 0 .

Anmerkung: Bei der Ableitung einer Funktion ist stets genau zu beachten, welche der (u.U. mehreren) in der Funktionsgleichung auftretenden Variablen die unabhängige (Funktions-)Variable kennzeichnet.

Beispielsweise ist für f ( x ) = c nach obiger Regel die Ableitung f ′ ( x ) = 0 , während dies für f ( c ) = c       ( c ∈ ℝ ) nicht zutrifft.

  • Graph der konstanten Funktion
Lernhelfer (Duden Learnattack GmbH): "Konstantenregel der Differenzialrechnung." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/index.php/schuelerlexikon/mathematik-abitur/artikel/konstantenregel-der-differenzialrechnung (Abgerufen: 01. July 2025, 07:50 UTC)

Suche nach passenden Schlagwörtern

  • Ableitung
  • Differenzenquotient
  • konstante Funktion
  • Graph
  • Konstantenregel
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Produktregel der Differenzialrechnung

Im Folgenden soll die Produktregel der Differenzialrechnung bewiesen werden.
Die Produktregel lässt sich auch auf endlich viele Faktoren erweitern. 

Quotientenregel der Differenzialrechnung

Im Folgenden soll die Quotientenregel der Differenzialrechnung bewiesen werden.    

Summenregel der Differenzialrechnung

Im Folgenden soll die Summenregel der Differenzialrechnung bewiesen werden.
Die Summenregel gilt auch für mehr als zwei Summanden, was mithilfe des Beweisverfahrens der vollständigen Induktion bewiesen werden kann.

Ableitung von Funktionen in Parameterdarstellung

Funktionen können in unterschiedlicher Form gegeben sein. Eine der Möglichkeiten ist die Darstellung in Parameterform. Hierbei werden die Variablen x und y aus der Funktionsgleichung y = f(x) unter Verwendung einer Hilfsvariablen, eines Parameters, z.B. t, ausgedrückt. Das heißt also: x = ϕ ( t ) und y = ψ ( t ) .

Faktorregel der Differenzialrechnung

Es sei g mit y = g ( x ) eine über ihrem gesamten Definitionsbereich D f differenzierbare Funktion mit der Ableitung y ′ = g ′ ( x ) .
Durch Multiplikation der Funktionsgleichung von g mit dem konstanten Faktor k ∈ ℝ erhält man die Funktion f ( x ) = k ⋅ g ( x ) .

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025