Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Mathematik Abitur
  3. 4 Gleichungen und Gleichungssysteme
  4. 4.6 Exponential- und Logarithmengleichungen
  5. 4.6.0 Überblick
  6. Logarithmusgleichungen

Logarithmusgleichungen

Eine Gleichung nennt man Logarithmengleichung, wenn mindestens eine freie Variable (Unbekannte) als Logarithmus (zu einer beliebigen Basis a) auftritt.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Das Lösen von Logarithmengleichungen erfolgt, indem man beide Seiten zur Basis a potenziert und Logarithmen- bzw. Potenzgesetze anwendet:
  log   a x = b a log   a x = a b x = a b

  • Beispiel 1: Wie groß muss eine natürliche Zahl a mindesten sein, damit ihre n-te Potenz größer als eine gegebene Zahl b ( m i t       b > a ) ist?

Es ist also die Lösungsmenge der Ungleichung a n > b im Grundbereich der natürlichen Zahlen zu ermitteln (wobei b und n gegeben sind und a gesucht ist).
Lösung:
  a n > b Logarithmieren zur Basis 10 n ⋅ lg a > lg b lg a > 1 n ⋅ lg b Potenzieren zur Basis 10 a > 10 1 n ⋅ b

  • Beispiel 2: Wie groß muss eine Zahl sein, damit ihre 5. Potenz größer als 8000 ist?

Gesucht sind also alle natürlichen Zahlen a mit a 5 > 8000. Es sind also n = 5       u n d       b = 8000 in die oben ermittelte allgemeine Lösung einzusetzen.
Man erhält:

  a = 10 0,2   ⋅   lg   8000 ≈ 10 0,781 ≈ 6,03

Die Lösung lautet damit a = 7 .
Anmerkung: Ein Runden auf die Zahl 6 wäre falsch, denn es gilt 6 5 = 7776 .

Logarithmengleichungen können auch mithilfe von Computeralgebrasystemen gelöst werden.

Lernhelfer (Duden Learnattack GmbH): "Logarithmusgleichungen." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/index.php/schuelerlexikon/mathematik-abitur/artikel/logarithmusgleichungen (Abgerufen: 20. May 2025, 20:48 UTC)

Suche nach passenden Schlagwörtern

  • dekadische Logarithmen
  • Basis
  • Berechnung
  • natürliche Logarithmen
  • Mathcad
  • Rechenbeispiel
  • interaktives Rechenbeispiel
  • Logarithmieren
  • potenzieren
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Grafisches Lösen von Gleichungen

Gleichungen, für die exakte Lösungsverfahren nicht bekannt oder zu zeitaufwendig sind, lassen sich oft mit hinreichender Genauigkeit grafisch lösen.

Dabei geht man von der zu lösenden Bestimmungsgleichung zur entsprechenden Funktionsgleichung über, stellt (unter Verwendung eines Taschenrechners) eine Wertetabelle auf und zeichnet den Graphen der Funktion.

Die Abszissen der Schnittpunkte des Funktionsgraphen mit der x-Achse, also die Nullstellen, sind die Lösungen der Gleichung. Man liest sie näherungsweise ab. Die Genauigkeit beim Ablesen kann verbessert werden, wenn die Funktion in einem immer engeren Intervall um die Nullstelle herum dargestellt wird.

Das Vorgehen beim grafischen Lösen von Gleichungen soll im Folgenden durch ein Beispiel verdeutlicht werden.

Lösen von Anwendungsaufgaben mithilfe von Exponentialgleichungen

Eine Reihe von inner- und außermathematischen Anwendungsaufgaben führt auf das Lösen von Exponentialgleichungen.
Als Beispiele werden Aufgaben zur Zinseszinsrechnung, zum atmosphärischen Luftdruck sowie zum Entladen eines Kondensators angegeben.

Lösen von Exponentialgleichungen

Eine Gleichung nennt man Exponentialgleichung, wenn mindestens ein freie Variable (Unbekannte) als Exponent auftritt.
Exponentialgleichungen können durch Exponentenvergleich, durch Logarithmieren bzw. auf grafischem Wege gelöst werden.

Anwendung transzendenter Funktionen bei der Zinseszinsrechnung

Wird ein festes Kapital K mehrere Jahre verzinst, ohne dass die Zinsen am Jahresende abgehoben werden, so werden auch die jeweils angefallen Zinsen mit verzinst. Man spricht in diesem Fall von der sogenannten Zinseszinsrechnung. Diese stellt eine wichtige Anwendung transzendenter Funktionen dar.

Exponentialfunktionen

Funktionen mit Gleichungen der Form
  y = f ( x ) = a x   ( a ∈ ℝ ;       a > 0 ;       a ≠ 1 )
heißen Exponentialfunktionen. Ihr Definitionsbereich ist die Menge ℝ der reellen Zahlen.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025