Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Mathematik Abitur
  3. 13 Wahrscheinlichkeitstheorie
  4. 13.5 Binomialverteilung
  5. 13.5.8 Zentraler Grenzwertsatz
  6. Wahrscheinlichkeitsverteilungen, Ermitteln

Wahrscheinlichkeitsverteilungen, Ermitteln

Hier kannst du dich selbst testen. So kannst du dich gezielt auf Prüfungen und Klausuren vorbereiten oder deine Lernerfolge kontrollieren.

Multiple-Choice-Test zum Thema "Mathematik - Ermitteln von Wahrscheinlichkeitsverteilungen".

Viel Spaß beim Beantworten der Fragen!

WISSENSTEST

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.
Lernhelfer (Duden Learnattack GmbH): "Wahrscheinlichkeitsverteilungen, Ermitteln." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/index.php/schuelerlexikon/mathematik-abitur/artikel/wahrscheinlichkeitsverteilungen-ermitteln (Abgerufen: 20. May 2025, 23:43 UTC)

Suche nach passenden Schlagwörtern

  • Wahrscheinlichkeitsverteilung
  • Wissenstest
  • Test
  • Baumdiagramm
  • Vierfeldertafel
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Grafische Darstellung von Daten

Für die grafische Veranschaulichung von Daten, die durch statistische Untersuchungen gewonnen wurden, nutzt man verschiedene Möglichkeiten, die in starkem Maße durch den Charakter der darzustellenden Daten (quantitative oder qualitative Merkmale, diskrete oder stetige quantitative Merkmale usw.) bestimmt werden.
Wichtige Darstellungsarten sind Stängel-Blatt-Diagramme, Stabdiagramme (auch Strecken- oder Balkendiagramme), Blockdiagramme (Streifendiagramme), Kreisdiagramme, Histogramme (Säulendiagramme) und Polygonzüge.

Häufigkeitsverteilungen, Darstellung

Hier kannst du dich selbst testen. So kannst du dich gezielt auf Prüfungen und Klausuren vorbereiten oder deine Lernerfolge kontrollieren.

Multiple-Choice-Test zum Thema "Mathematik - Darstellung von Häufigkeitsverteilungen".

Viel Spaß beim Beantworten der Fragen!

WISSENSTEST

Binomialkoeffizienten

Gilt es, Wahrscheinlichkeiten zum Beispiel im Zusammenhang mit der Binomialverteilung oder mit dem Abzählprinzip für die Gleichverteilung zu berechnen, werden als Binomialkoeffizienten bezeichnete Terme verwandt. Es sind dies die Koeffizienten, die beim Entwickeln der n-ten Potenz eines Binoms ( a + b ) auftreten.
Sie werden u.a. angewandt, um Wahrscheinlichkeiten (etwa im Zusammenhang mit der Binomialverteilung oder mit dem Abzählprinzip für Mengen) zu berechnen.

Histogramme

Zum grafischen Veranschaulichen der Häufigkeits- und der Wahrscheinlichkeitsverteilungen von endlichen Zufallsgrößen X mit
  X ≙ ( x 1 x 2 ... x n P ( X = x 1 ) P ( X = x 2 ) ... P ( X = x n ) )
werden ihre relativen Häufigkeiten der Klassen bzw. ihre Einzelwahrscheinlichkeiten häufig als Stäbe oder als Säulen (Rechtecke) dargestellt, die senkrecht auf der Abszissenachse stehen.
Ist bei einem derartigen aufrechten Säulendiagramm jeweils der Flächeninhalt des über der Klasse K i bzw. über x i errichteten Rechtecks gleich der relativen Häufigkeit h n ( K i ) bzw. der Einzelwahrscheinlichkeit P ( X = x i ) so nennt man es Histogramm.

Approximation einer Binomialverteilung

Bei der praktischen Anwendung der Binomialverteilung B n ;   p treten nicht selten große oder sogar sehr große Werte von n (etwa n = 10   000 ) auf, wodurch das Berechnen der Wahrscheinlichkeiten aufgrund der dabei zu ermittelnden Fakultäten und Potenzen sehr zeitaufwendig wird. Schon frühzeitig versuchte man deshalb, Näherungsformeln für die Binomialverteilung zu finden.

Hier ist es (unter bestimmten Voraussetzungen) günstig, die Binomialverteilung durch eine POISSON-Verteilung oder eine Normalverteilung zu approximieren und entsprechende Näherungsformeln anzuwenden.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025