Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Mathematik
  3. 3 Zahlen und Rechnen
  4. 3.3 Gebrochene Zahlen
  5. 3.3.1 Zahlbegriff; Zahldarstellungen
  6. Diagonalverfahren

Diagonalverfahren

Obwohl die Menge der gebrochenen Zahlen unendlich und überall dicht ist, kann man die gebrochenen Zahlen eindeutig den natürlichen Zahlen zuordnen, man kann sie abzählen.
Die Menge ℚ + der gebrochenen Zahlen ist abzählbar. Dies geschieht nach dem sogenannten cantorschen Diagonalverfahren (benannt nach GEORG CANTOR, 1845 bis 1918).

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Obwohl die Menge der gebrochenen Zahlen unendlich und überall dicht ist, kann man die gebrochenen Zahlen eindeutig den natürlichen Zahlen zuordnen, man kann sie abzählen.
Die Menge ℚ + der gebrochenen Zahlen ist abzählbar. Dies geschieht nach dem sogenannten cantorschen Diagonalverfahren (benannt nach GEORG CANTOR, 1845 bis 1918) wie folgt:

Die gebrochenen Zahlen werden nach nebenstehendem Schema angeordnet. Dabei werden offensichtlich alle erfasst. Man zählt nun von 1 beginnend in Pfeilrichtung und lässt dabei alle Brüche, die eine schon erfasste gebrochene Zahl darstellen, weg. Die Reihenfolge lautet also:
1     ;     1 2     ;     2     ;     3     ;   1 3     ;   1 4     ;     2 3     ;   3 2     ;     4     ;     5     ;     1 5     ;   ...
Man hat die gebrochenen Zahlen abgezählt, allerdings nicht mehr in einer der Größe nach geordneten Reihenfolge dargestellt.

  • Diagonalverfahren
Lernhelfer (Duden Learnattack GmbH): "Diagonalverfahren." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/index.php/schuelerlexikon/mathematik/artikel/diagonalverfahren (Abgerufen: 20. May 2025, 17:54 UTC)

Suche nach passenden Schlagwörtern

  • Bruchzahl
  • Cantor
  • Diagonalverfahren
  • Bruchzahlen
  • Brüche
  • gebrochene Zahlen
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Julius Wilhelm Richard Dedekind

* 6. Oktober 1831 Braunschweig
† 12. Februar 1916 Braunschweig

RICHARD DEDEKINDS Hauptinteressen lagen auf dem Gebiet der algebraischen Zahlentheorie. Insbesondere wurde er durch seine theoretische Fundierung der reellen (irrationalen) Zahlen mithilfe des sogenannten dedekindschen Schnittes bekannt.

Leopold Kronecker

* 7. Dezember 1823 Liegnitz
† 29. Dezember 1891 Berlin

LEOPOLD KRONECKER war ein führender Vertreter der sogenannten Berliner Schule, die dür die Arithmetisierung der gesamten Mathematik eintrat.
KRONECKER arbeitetet insbesondere auf den Gebieten der Arithmetik, Zahlentheorie und Idealtheorie sowie über elliptische Funktionen.
Mit seinem Namen verbunden ist das Kroneckersymbol δ i   k . Darunter versteht man eine Funktion aller Paare ( i ,   k ) mit:
  δ i   k = { 1 für      i = k 0 für      i ≠ k

Dedekindscher Schnitt

Durch einen dedekindschen Schnitt t werden Zahlenmengen in ein Paar Teilmengen A und B so zerlegt, dass für jedes a ∈ A und jedes b ∈ B die Beziehung a ≤ t ≤ b gilt (wobei t eine reelle Zahl ist).
Man kann dedekindsche Schnitte in der Menge ℚ der rationalen Zahlen benutzen, um die Menge der reellen Zahlen ℝ zu definieren.

Zur Geschichte der Zahlen

Unser dekadisches Positionssystem geht auf den indischen Kulturkreis zurück. Der arabische Mathematiker AL-CHWARIZMI erklärte und verwendete im Jahre 820 in seinem Lehrbuch der Arithmetik neue indische Ziffern. Im 12. Jahrhundert wurde dieses Buch in Spanien durch ROBERT VON CHESTER übersetzt. Von da aus traten die sogenannten arabischen Ziffern ihren Siegeszug an.

Reelle Zahlen

Der Bereich der rationalen Zahlen und der Bereich der irrationalen Zahlen bilden zusammen den Bereich der reellen Zahlen.
Reelle Zahlen lassen sich auf der Zahlengeraden darstellen, dabei gehört zu jeder reellen Zahl genau ein Punkt und zu jedem Punkt genau eine reelle Zahl.
Für das Rechnen mit reellen Zahlen gelten im Prinzip die gleichen Regeln und Gesetze wie im Bereich der rationalen Zahlen. Anstelle mit reellen Zahlen rechnet man häufig mit deren rationalen Nährungswerten.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025