Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Mathematik
  3. 3 Zahlen und Rechnen
  4. 3.3 Gebrochene Zahlen
  5. 3.3.1 Zahlbegriff; Zahldarstellungen
  6. Erweitern und Kürzen

Erweitern und Kürzen

Beim Erweitern von Brüchen werden Zähler und Nenner mit der gleichen von 0 und 1 verschiedenen Zahl multipliziert.
Beim Kürzen von Brüchen werden Zähler und Nenner durch die gleiche von 0 und 1 verschiedene Zahl dividiert.
Im Berechnungsbeispiel können beliebige gemeine Brüche erweitert oder gekürzt werden.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Beim Erweitern von Brüchen werden Zähler und Nenner mit der gleichen von 0 und 1 verschiedenen Zahl multipliziert.

Das Erweitern ist angebracht, wenn gemeine Brüche addiert werden sollen. Man sucht dann das kgV aller Nenner, den sogenannten Hauptnenner, und erweitert alle Brüche so, dass ihr neuer Nenner dieser Hauptnenner ist.
Beim Kürzen von Brüchen werden Zähler und Nenner durch die gleiche von 0 und 1 verschiedene Zahl dividiert.
Das Kürzen ist nur dann möglich, wenn Zähler und Nenner durch die gleiche (von 0 und 1 verschiedene) Zahl teilbar sind. Die größte Zahl, durch die man einen Bruch kürzen kann, ist der größte gemeinsame Teiler von Zähler und Nenner.
Ein häufiger Fehler besteht darin, dass bei einem Bruch, dessen Zähler oder Nenner eine Summe (oder Differenz) ist, nicht der gesamte Zähler und der gesamte Nenner durch die gleiche Zahl geteilt werden, sondern einzelne Summanden gegeneinander gekürzt werden.
Merkhilfe: Differenzen und Summen kürzen nur die Dummen.

Kurioserweise gibt es aber einige Brüche, bei denen man ein richtiges Ergebnis erhält, wenn man in Zähler und Nenner einzelne Ziffern gegeneinander kürzt. Wenn man beispielsweise bei 16 64 die Sechsen gegeneinander kürzt, erhält man mit 1 4 ein richtiges Ergebnis. Genauso verhalten sich auch einige andere Brüche. Mit Zählern und Nennern, die kleiner als 100 sind, gibt es mit gleicher Eigenschaft noch folgende Brüche:

       19 95 = 1 5 ;     26 65 = 2 5 ;     49 98 = 4 8

  • BWS-MAT1-0257-01.xls (303 KB)
  • BWS-MAT1-0257-02.pdf (262.63 KB)

Im Berechnungsbeispiel können beliebige gemeine Brüche erweitert oder gekürzt werden.

Lernhelfer (Duden Learnattack GmbH): "Erweitern und Kürzen." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/index.php/schuelerlexikon/mathematik/artikel/erweitern-und-kuerzen (Abgerufen: 20. May 2025, 06:21 UTC)

Suche nach passenden Schlagwörtern

  • interaktiv
  • Mathcad
  • Nenner
  • Zähler
  • Brüche
  • kürzen
  • erweitern
  • Berechnungsbeispiel
  • gebrochene Zahlen
  • Hauptnenner
  • Arbeitsblatt
  • Bruchzahl
  • Differenz
  • Bruchzahlen
  • kgV
  • Rechenbeispiel
  • Excel-Beispiel
  • Summe
  • ggT
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Bruchterme, Rechnen

Ein Term wird Bruchterm genannt, wenn sein Nenner eine (freie) Variable enthält.
Eine Gleichung bzw. Ungleichung wird Bruchgleichung bzw. Bruchungleichung genannt, wenn sie mindestens einen Bruchterm enthält.
Der Definitionsbereich eines Bruchterms mit einer Variablen ist die Menge aller Zahlen, für die der Term nach ihrem Einsetzen in die Variable definiert ist. Der Definitionsbereich einer Bruchgleichung ist entsprechend die Menge aller Zahlen, für die alle Bruchterme der Bruchgleichung definiert sind.
Ein Bruchterm ist genau dann null, wenn der Zähler null und der Nenner nicht null ist.

Euklidischer Algorithmus

Der sogenannte euklidische Algorithmus ist ein Verfahren zum Ermitteln des größten gemeinsamen Teilers (ggT) zweier Zahlen.
Beim euklidischen Algorithmus wird wie folgt verfahren:
Man teilt die größere durch die kleinere Zahl. Geht die Division auf, ist der Divisor der ggT. Geht die Division nicht auf, bleibt ein Rest. Dieser Rest ist der neue Divisor. Der alte Divisor wird zum Dividenden. Nun setzt man das Verfahren fort.
Nach endlich vielen Schritten erhält man den ggT.

Teilbarkeit

Die natürliche Zahl a teilt die natürliche Zahl b (a | b), wenn es eine natürliche Zahl n gibt, sodass gilt b = n · a. Die Zahl a heißt Teiler von b und b heißt Vielfaches von a.

4 | 24, da 24 = 6 · 4

Sprechweise: 4 teilt 24
oder: 4 ist ein Teiler von 24
oder: 24 ist ein Vielfaches von 4


Zur Ermittlung von Teilern großer Zahlen können Teilbarkeitsregeln verwendet werden.

Kleinstes gemeinsames Vielfaches

Ist eine Zahl v sowohl Vielfaches einer Zahl a als auch Vielfaches einer Zahl b, so heißt v gemeinsames Vielfaches von a und b.

Das kleinste gemeinsame Vielfache wird mit kgV bezeichnet.

Der Begriff „kleinstes gemeinsames Vielfaches“ kann auch auf mehr als zwei Zahlen erweitert werden.

Man erhält das kgV aus den Primfaktorzerlegungen der Zahlen, indem man alle vorkommenden Primfaktoren in ihrer höchsten Potenz multipliziert.

Größter gemeinsamer Teiler

Ist eine Zahl g sowohl Teiler einer Zahl a als auch Teiler einer Zahl b, so heißt g gemeinsamer Teiler von a und b.
Der größte gemeinsame Teiler wird mit ggT bezeichnet.
Der Begriff „größter gemeinsamer Teiler“ kann auch auf mehr als zwei Zahlen erweitert werden.
Man erhält den ggT, indem man die höchsten Potenzen aller Primfaktoren multipliziert, die in allen Zerlegungen gemeinsam vorkommen.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025