Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Mathematik
  3. 2 Grundbegriffe der Mathematik
  4. 2.2 Mengen
  5. 2.2.1 Mengenbegriff
  6. Menge

Menge

Der Begriff Menge wird in der Mathematik als Grundbegriff verwendet, also nicht mit anderen Begriffen definiert.
Zusammenfassungen von beliebigen wirklich existierenden oder gedachten Dingen zu einem Ganzen werden als Mengen bezeichnet.
Die zusammengefassten Dinge sind die Elemente der Menge.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Der Begriff Menge wird in der Mathematik als Grundbegriff verwendet, also nicht mit anderen Begriffen erklärt.
Zusammenfassungen von beliebigen wirklich existierenden oder gedachten Dinge zu einem Ganzen werden als Mengen bezeichnet. Die zusammengefassten Dinge sind die Elemente der Menge.
x ∈ M (gesprochen: x Element M) bedeutet „x gehört zur Menge M“.
x ∉ M (gesprochen: x nicht Element M) bedeutet „x gehört nicht zu M“.
Beispiel:
15 ∈ ℕ (15 ist eine natürliche Zahl.)
–7 ∉ ℚ + (–7 ist keine gebrochene Zahl.)

In ähnlicher Weise wurde der Begriff „Menge“ erstmals 1895 vom deutschen Mathematiker GEORG CANTOR (1845 bis 1918) erklärt. Er begründete Ende des 19. Jahrhunderts die Mengenlehre als Mittel zur kurzen, präzisen Darstellung von mathematischen Sachverhalten.
Diese deshalb oft auch als cantorsche Mengendefinition bezeichnete Erklärung des Begriffs Menge ist allerdings keine Definition, denn der Begriff „Menge“ wird hier nicht auf andere, bereits definierte Begriffe zurückgeführt.
Das Wort „Zusammenfassung“ ermöglicht allerdings eine anschauliche Beschreibung des Sachverhaltes.

Werden Objekte zu einer Menge zusammengefasst, erfolgt das nach den Eigenschaften, die alle Objekte der Menge haben. Diese Eigenschaften können mit Aussageformen beschrieben werden. Die und nur die Objekte des Grundbereiches, welche die Aussageform erfüllen, gehören zur Menge.
Beispiel:
M sei die Menge aller ganzzahligen Teiler von 24.
M = { x ∈ G : x | 24 }

Jede Menge wird also aus allen Elementen des Grundbereichs gebildet, die die mengenbildende Eigenschaft besitzen.
Es gibt hier drei Möglichkeiten:

  1. Kein Element des Grundbereichs hat die mengenbildende Eigenschaft. Es entsteht die leere Menge.
    Beispiel:
    Für keine natürliche Zahl wird die Aussageform x < 0 zur wahren Aussage.
    A = { x ∈ ℕ : x < 0 } = { } = 0
  2. Mindestens ein Element, aber nicht alle Elemente des Grundbereichs haben die mengenbildende Eigenschaft.
    Beispiel:
    Für einige, aber nicht für alle natürlichen Zahlen wird die Aussageform x |12 zur wahren Aussage.
    B = { x ∈ ℕ : x |12 } = { 1; 2; 3; 4; 6; 12 } enthält deshalb einige, aber nicht alle Elemente aus ℕ .
  3. Alle Elemente des Grundbereichs haben die mengenbildende Eigenschaft. Die Menge C ist die Allmenge über dem Grundbereich G (C = G).
    Beispiel:
    Für alle natürlichen Zahlen wird die Aussageform x 3 + 1 > 0 zur wahren Aussage.
    C = { x ∈   ℕ : x 3 + 1 > 0 } = ℕ
Lernhelfer (Duden Learnattack GmbH): "Menge." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/index.php/schuelerlexikon/mathematik/artikel/menge (Abgerufen: 20. May 2025, 17:52 UTC)

Suche nach passenden Schlagwörtern

  • Elemente
  • leere Menge
  • Allmenge
  • Menge
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Georg Ferdinand Ludwig Philipp Cantor

* 3. März 1845 St. Petersburg
† 6. Januar 1918 Halle (Saale)

GEORG CANTOR, der über 30 Jahre Professor an der Hallenser Universität war, gilt als Begründer der (axiomatischen) Mengenlehre. Er formulierte die Begriffe Äquivalenz und Mächtigkeit von Mengen, auf die sich die von ihm geschaffene Theorie der Kardinalzahlen stützt.
Mithilfe des sogenannten Diagonalverfahrens zeigte CANTOR, dass es zwar unendlich viele rationale Zahlen gibt, man diese jedoch abzählen kann.

Friedrich Ludwig Gottlob Frege

* 08.11.1848 Wismar
† 26.07.1925 Bad Kleinen

GOTTLOB FREGE arbeitete an der Universität Jena. Er war maßgeblich an der Schaffung von Grundlagen der Logik beteiligt, wobei er an Ideen des englischen Mathematikers GEORGE BOOLE anknüpfte. FREGES Ideen wiederum waren Grundlage für GIUSEPPE PEANO und BERTRAND RUSSELL.

Earl of Bertrand Arthur William Russell

* 18. Mai 1872 Ravenscroft Trellek, Monmouthshire, Wales
† 2. Februar 1970 Penrhyndeudraeth Merioneth, Wales

BERTRAND RUSSELL ist Mitbegründer der modernen mathematischen Logik. Im Jahre 1901 fand er die nach ihm benannte Antinomie der Menge aller Mengen, die sich nicht selbst enthalten.
RUSSELL veröffentlichte zudem zahlreiche philosophische Schriften und Essays.

Differenzmenge

Die Differenzmenge A \ B (gesprochen „A ohne B“) ist die Menge aller Elemente, die in A und nicht in B enthalten sind:

   A \ B = { x :       x ∈ A ∧ x ∉ B }

Durchschnittsmenge (Durchschnitt)

Die Durchschnittsmenge (Schnittmenge) von A und B ( A ∩ B ) ist die Menge aller Elemente, die in A und zugleich in B enthalten sind.
Man liest: „A geschnitten B“.
A ∩ B = { x :       x ∈ A ∧ x ∈ B }
Das Zeichen „ ∧ “ steht für das Bindewort „und“.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025